广西壮族自治区南宁市重点中学2021-2022学年十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.习近平主席在2018年新年贺词中指出,2017年,基本医疗保险已经覆盖1350000000人.将1350000000用科学记数法表示为( )
A.135×107 B.1.35×109 C.13.5×108 D.1.35×1014
2.在直角坐标平面内,已知点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,那么r的取值范围为( )
A. B. C. D.
3.一、单选题
在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的( )
A.平均数 B.众数 C.中位数 D.方差
4.﹣6的倒数是( )
A.﹣ B. C.﹣6 D.6
5.如图,将函数的图象沿y轴向上平移得到一条新函数的图象,其中点A(-4,m),B(-1,n),平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是 ( )
A. B. C. D.
6.下列四个式子中,正确的是( )
A. =±9 B.﹣ =6 C.()2=5 D.=4
7.如图,为的直径,为上两点,若,则的大小为( ).
A.60° B.50° C.40° D.20°
8.一、单选题
如图: 在中,平分,平分,且交于,若,则等于( )
A.75 B.100 C.120 D.125
9.如图,为等边三角形,要在外部取一点,使得和全等,下面是两名同学做法:( )
甲:①作的角平分线;②以为圆心,长为半径画弧,交于点,点即为所求;
乙:①过点作平行于的直线;②过点作平行于的直线,交于点,点即为所求.
A.两人都正确 B.两人都错误 C.甲正确,乙错误 D.甲错误,乙正确
10.如图,等边△ABC的边长为1cm,D、E分别AB、AC是上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分的周长为( )cm
A.1 B.2 C.3 D.4
二、填空题(共7小题,每小题3分,满分21分)
11.如图,若正五边形和正六边形有一边重合,则∠BAC=_____.
12.分解因式:x2﹣1=____.
13.图中圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD= .
14.在矩形ABCD中,AB=6CM,E为直线CD上一点,连接AC,BE,若AC与BE交与点F, DE=2,则EF:BE= ________ 。
15.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为__.
16.已知是二元一次方程组的解,则m+3n的立方根为__.
17.若2a﹣b=5,a﹣2b=4,则a﹣b的值为________.
三、解答题(共7小题,满分69分)
18.(10分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.
(1)求七年级已“建档立卡”的贫困家庭的学生总人数;
(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;
(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.
19.(5分)在抗洪抢险救灾中,某地粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到没有受洪水威胁的A,B两仓库,已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为60吨,B库的容量为120吨,从甲、乙两库到A、B两库的路程和运费如表(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)
路程(千米)
运费(元/吨•千米)
甲库
乙库
甲库
乙库
A库
20
15
12
12
B库
25
20
10
8
若从甲库运往A库粮食x吨,
(1)填空(用含x的代数式表示):
①从甲库运往B库粮食 吨;
②从乙库运往A库粮食 吨;
③从乙库运往B库粮食 吨;
(2)写出将甲、乙两库粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式,并求出当从甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?
20.(8分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.求证:DF是BF和CF的比例中项;在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.
21.(10分)关于的一元二次方程.求证:方程总有两个实数根;若方程有一根小于1,求的取值范围.
22.(10分)随着高铁的建设,春运期间动车组发送旅客量越来越大,相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间的铁路发送旅客量情况进行了调查,过程如下.
(Ⅰ)收集、整理数据
请将表格补充完整:
(Ⅱ)描述数据
为了更直观地显示动车组发送旅客量占比的变化趋势,需要用什么图(回答“折线图”或“扇形图”)进行描述;
(Ⅲ)分析数据、做出推测
预估2019年春运期间动车组发送旅客量占比约为多少,说明你的预估理由.
23.(12分)如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应数分别为a、b、c、d、e.
(1)若a+e=0,则代数式b+c+d= ;
(2)若a是最小的正整数,先化简,再求值:;
(3)若a+b+c+d=2,数轴上的点M表示的实数为m(m与a、b、c、d、e不同),且满足MA+MD=3,则m的范围是 .
24.(14分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.
如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将1350000000用科学记数法表示为:1350000000=1.35×109,
故选B.
【点睛】
本题考查科学记数法的表示方法. 科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值及n的值.
2、D
【解析】
先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可.
【详解】
解:∵点M的坐标是(4,3),
∴点M到x轴的距离是3,到y轴的距离是4,
∵点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,
∴r的取值范围是3<r<4,
故选:D.
【点睛】
本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键.
3、C
【解析】
由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.
【详解】
由于总共有7个人,且他们的成绩各不相同,第4的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.
故选C.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
4、A
【解析】
解:﹣6的倒数是﹣.故选A.
5、D
【解析】
分析:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),AC=-1-(-1)=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.
详解:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),
∴AC=-1-(-1)=3,
∵曲线段AB扫过的面积为9(图中的阴影部分),
∴矩形ACD A′的面积等于9,
∴AC·AA′=3AA′=9,
∴AA′=3,
∴新函数的图是将函数y=(x-2)2+1的图象沿y轴向上平移3个单位长度得到的,
∴新图象的函数表达式是y=(x-2)2+1+3=(x-2)2+1.
故选D.
点睛:此题主要考查了二次函数图象变换以及矩形的面积求法等知识,根据已知得出AA′的长度是解题关键.
6、D
【解析】
A、表示81的算术平方根;B、先算-6的平方,然后再求−的值;C、利用完全平方公式计算即可;D、=.
【详解】
A、=9,故A错误;
B、-=−=-6,故B错误;
C、()2=2+2+3=5+2,故C错误;
D、==4,故D正确.
故选D.
【点睛】
本题主要考查的是实数的运算,掌握算术平方根、平方根和二次根式的性质以及完全平方公式是解题的关键.
7、B
【解析】
根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.
【详解】
解:连接,
∵为的直径,
∴.
∵,
∴,
∴.
故选:B.
【点睛】
本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.
8、B
【解析】
根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.
【详解】
解:∵CE平分∠ACB,CF平分∠ACD,
∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,
∴△EFC为直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故选:B.
【点睛】
本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.
9、A
【解析】
根据题意先画出相应的图形,然后进行推理论证即可得出结论.
【详解】
甲的作法如图一:
∵为等边三角形,AD是的角平分线
∴
由甲的作法可知,
在和中,
故甲的作法正确;
乙的作法如图二:
在和中,
故乙的作法正确;
故选:A.
【点睛】
本题主要借助尺规作图考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.
10、C
【解析】
由题意得到DA′=DA,EA′=EA,经分析判断得到阴影部分的周长等于△ABC的周长即可解决问题.
【详解】
如图,由题意得:
DA′=DA,EA′=EA,
∴阴影部分的周长=DA′+EA′+DB+CE+BG+GF+CF
=(DA+BD)+(BG+GF+CF)+(AE+CE)
=AB+BC+AC
=1+1+1=3(cm)
故选C.
【点睛】
本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.
二、填空题(共7小题,每小题3分,满分21分)
11、132°
【解析】
解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案为132°.
12、(x+1)(x﹣1).
【解析】
试题解析:x2﹣1=(x+1)(x﹣1).
考点:因式分解﹣运用公式法.
13、30°
【解析】
试题分析:∵CA∥OB,∠AOB=30°,∴∠CAO=∠AOB=30°.
∵OA=OC,∴∠C=∠OAC=30°.
∵∠C和∠AOD是同弧所对的圆周角和圆心角,∴∠AOD=2∠C=60°.
∴∠BOD=60°-30°=30°.
14、4:7或2:5
【解析】
根据E在CD上和CD的延长线上,运用相似三角形分类讨论即可.
【详解】
解:当E在线段CD上如图:
∵矩形ABCD
∴AB∥CD
∴△ABF∽△CFE
∴
设,即EF=2k,BF=3k
∴BE=BF+EF=5k
∴EF:BE=2k∶5k=2∶5
当当E在线段CD的延长线上如图:
∵矩形ABCD
∴AB∥CD
∴△ABF∽△CFE
∴
设,即EF=4k,BF=3k
∴BE=BF+EF=7k
∴EF:BE=4k∶7k=4∶7
故答案为:4:7或2:5.
【点睛】
本题以矩形为载体,考查了相似三角形的性质,解题的关键在于根据图形分类讨论,即数形结合的灵活应用.
15、1
【解析】
试题分析:如图,延长CF交AB于点G,
∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,
∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.
又∵点D是BC中点,∴DF是△CBG的中位线.
∴DF=BG=(AB﹣AG)=(AB﹣AC)=1.
16、3
【解析】
把x与y的值代入方程组求出m与n的值,即可确定出所求.
【详解】
解:把代入方程组得:
相加得:m+3n=27,
则27的立方根为3,
故答案为3
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值.
17、1.
【解析】
试题分析:把这两个方程相加可得1a-1b=9,两边同时除以1可得a-b=1.
考点:整体思想.
三、解答题(共7小题,满分69分)
18、(1)15人;(2)补图见解析.(3).
【解析】
(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;
(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;
(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.
【详解】
解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;
(2)A2的人数为15﹣2﹣6﹣4=3(人)
补全图形,如图所示,
A1所在圆心角度数为:×360°=48°;
(3)画出树状图如下:
共6种等可能结果,符合题意的有3种
∴选出一名男生一名女生的概率为:P=.
【点睛】
本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.
19、(1)①(100﹣x);②(1﹣x);③(20+x);(2)从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元.
【解析】
分析:(Ⅰ)根据题意解答即可;
(Ⅱ)弄清调动方向,再依据路程和运费列出y(元)与x(吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”.
详解:(Ⅰ)设从甲库运往A库粮食x吨;
①从甲库运往B库粮食(100﹣x)吨;
②从乙库运往A库粮食(1﹣x)吨;
③从乙库运往B库粮食(20+x)吨;
故答案为(100﹣x);(1﹣x);(20+x).
(Ⅱ)依题意有:若甲库运往A库粮食x吨,则甲库运到B库(100﹣x)吨,乙库运往A库(1﹣x)吨,乙库运到B库(20+x)吨.
则,解得:0≤x≤1.
从甲库运往A库粮食x吨时,总运费为:
y=12×20x+10×25(100﹣x)+12×15(1﹣x)+8×20×[120﹣(100﹣x)]
=﹣30x+39000;
∵从乙库运往A库粮食(1﹣x)吨,∴0≤x≤1,此时100﹣x>0,∴y=﹣30x+39000(0≤x≤1).
∵﹣30<0,∴y随x的增大而减小,∴当x=1时,y取最小值,最小值是2.
答:从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元.
点睛:本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定“最佳方案”.
20、证明见解析
【解析】
试题分析:(1)根据已知求得∠BDF=∠BCD,再根据∠BFD=∠DFC,证明△BFD∽△DFC,从而得BF:DF=DF:FC,进行变形即得;
(2)由已知证明△AEG∽△ADC,得到∠AEG=∠ADC=90°,从而得EG∥BC,继而得 ,
由(1)可得 ,从而得 ,问题得证.
试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,
∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,
∵E是AC的中点,
∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,
∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,
又∵∠BFD=∠DFC,
∴△BFD∽△DFC,
∴BF:DF=DF:FC,
∴DF2=BF·CF;
(2)∵AE·AC=ED·DF,
∴ ,
又∵∠A=∠A,
∴△AEG∽△ADC,
∴∠AEG=∠ADC=90°,
∴EG∥BC,
∴ ,
由(1)知△DFD∽△DFC,
∴ ,
∴ ,
∴EG·CF=ED·DF.
21、(2)见解析;(2)k<2.
【解析】
(2)根据方程的系数结合根的判别式,可得△=(k-2)2≥2,由此可证出方程总有两个实数根;
(2)利用分解因式法解一元二次方程,可得出x=2、x=k+2,根据方程有一根小于2,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.
【详解】
(2)证明:∵在方程中,△=[-(k+3)]-4×2×(2k+2)=k-2k+2=(k-2)≥2,
∴方程总有两个实数根.
(2) ∵x-(k+3)x+2k+2=(x-2)(x-k-2)=2,
∴x=2,x=k+2.
∵方程有一根小于2,
∴k+2<2,解得:k<2,
∴k的取值范围为k<2.
【点睛】
此题考查根的判别式,解题关键在于掌握运算公式.
22、(Ⅰ)见表格;(Ⅱ)折线图;(Ⅲ)60%、之前每年增加的百分比依次为 7%、6%、5%、4%,据此预测 2019 年增加的百分比接近 3%.
【解析】
(Ⅰ)根据百分比的意义解答可得;(Ⅱ)根据折线图和扇形图的特点选择即可得;(Ⅲ)根据之前每年增加的百分比依次为7%、6%、5%、4%,据此预测 2019 年增加的百分比接近3% .
【详解】
(Ⅰ)
年份
2014
2015
2016
2017
2018
动车组发送旅客量 a 亿人次
0.87
1.14
1.46
1.80
2.17
铁路发送旅客总量 b 亿人次
2.52
2.76
3.07
3.42
3.82
动车组发送旅客量占比× 100
34.5 %
41.3 %
47.6 %
52.6 %
56.8 %
(Ⅱ)为了更直观地显示动车组发送旅客量占比的变化趋势,需要用折线图进行描述,
故答案为折线图;
(Ⅲ)预估 2019 年春运期间动车组发送旅客量占比约为 60%,
预估理由是之前每年增加的百分比依次为 7%、6%、5%、4%,据此预测 2019 年增加的百分比接近 3%.
【点睛】
本题考查了统计图的选择,根据统计图的特点正确选择统计图是解题的关键.
23、 (1)0;(1) ,;(3) ﹣1<x<1.
【解析】
(1)根据a+e=0,可知a与e互为相反数,则c=0,可得b=-1,d=1,代入可得代数式b+c+d的值;
(1)根据题意可得:a=1,将分式计算并代入可得结论即可;
(3)先根据A、B、C、D、E为连续整数,即可求出a的值,再根据MA+MD=3,列不等式可得结论.
【详解】
解:(1)∵a+e=0,即a、e互为相反数,
∴点C表示原点,
∴b、d也互为相反数,
则a+b+c+d+e=0,
故答案为:0;
(1)∵a是最小的正整数,
∴a=1,
则原式=÷[+]
=÷
=•
=,
当a=1时,
原式==;
(3)∵A、B、C、D、E为连续整数,
∴b=a+1,c=a+1,d=a+3,e=a+4,
∵a+b+c+d=1,
∴a+a+1+a+1+a+3=1,
4a=﹣4,
a=﹣1,
∵MA+MD=3,
∴点M再A、D两点之间,
∴﹣1<x<1,
故答案为:﹣1<x<1.
【点睛】
本题考查了分式的化简求值,解题的关键是熟练的掌握分式的相关知识点.
24、(1)3;(2)∠DEF的大小不变,tan∠DEF=;(3)或.
【解析】
(1)当t=3时,点E为AB的中点,
∵A(8,0),C(0,6),
∴OA=8,OC=6,
∵点D为OB的中点,
∴DE∥OA,DE=OA=4,
∵四边形OABC是矩形,
∴OA⊥AB,
∴DE⊥AB,
∴∠OAB=∠DEA=90°,
又∵DF⊥DE,
∴∠EDF=90°,
∴四边形DFAE是矩形,
∴DF=AE=3;
(2)∠DEF的大小不变;理由如下:
作DM⊥OA于M,DN⊥AB于N,如图2所示:
∵四边形OABC是矩形,
∴OA⊥AB,
∴四边形DMAN是矩形,
∴∠MDN=90°,DM∥AB,DN∥OA,
∴, ,
∵点D为OB的中点,
∴M、N分别是OA、AB的中点,
∴DM=AB=3,DN=OA=4,
∵∠EDF=90°,
∴∠FDM=∠EDN,
又∵∠DMF=∠DNE=90°,
∴△DMF∽△DNE,
∴,
∵∠EDF=90°,
∴tan∠DEF=;
(3)作DM⊥OA于M,DN⊥AB于N,
若AD将△DEF的面积分成1:2的两部分,
设AD交EF于点G,则点G为EF的三等分点;
①当点E到达中点之前时,如图3所示,NE=3﹣t,
由△DMF∽△DNE得:MF=(3﹣t),
∴AF=4+MF=﹣t+,
∵点G为EF的三等分点,
∴G(,),
设直线AD的解析式为y=kx+b,
把A(8,0),D(4,3)代入得: ,
解得: ,
∴直线AD的解析式为y=﹣x+6,
把G(,)代入得:t=;
②当点E越过中点之后,如图4所示,NE=t﹣3,
由△DMF∽△DNE得:MF=(t﹣3),
∴AF=4﹣MF=﹣t+,
∵点G为EF的三等分点,
∴G(,),
代入直线AD的解析式y=﹣x+6得:t=;
综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或.
考点:四边形综合题.
庆阳市重点中学2021-2022学年十校联考最后数学试题含解析: 这是一份庆阳市重点中学2021-2022学年十校联考最后数学试题含解析,共19页。试卷主要包含了计算的结果是,一组数据等内容,欢迎下载使用。
广西壮族自治区南宁市兴宁区达标名校2021-2022学年十校联考最后数学试题含解析: 这是一份广西壮族自治区南宁市兴宁区达标名校2021-2022学年十校联考最后数学试题含解析,共21页。
2021-2022学年上海市崇明县重点中学十校联考最后数学试题含解析: 这是一份2021-2022学年上海市崇明县重点中学十校联考最后数学试题含解析,共18页。试卷主要包含了答题时请按要求用笔,下列说法中,正确的是等内容,欢迎下载使用。