广西崇左市2022年中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列判断正确的是( )
A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上
B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨
C.“篮球队员在罚球线上投篮一次,投中”为随机事件
D.“a是实数,|a|≥0”是不可能事件
2.计算3–(–9)的结果是( )
A.12 B.–12 C.6 D.–6
3.下列各类数中,与数轴上的点存在一一对应关系的是( )
A.有理数 B.实数 C.分数 D.整数
4.下列成语描述的事件为随机事件的是( )
A.水涨船高 B.守株待兔 C.水中捞月 D.缘木求鱼
5.如下图所示,该几何体的俯视图是 ( )
A. B. C. D.
6.(2011•雅安)点P关于x轴对称点为P1(3,4),则点P的坐标为( )
A.(3,﹣4) B.(﹣3,﹣4)
C.(﹣4,﹣3) D.(﹣3,4)
7.已知x=2是关于x的一元二次方程x2﹣x﹣2a=0的一个解,则a的值为( )
A.0 B.﹣1 C.1 D.2
8.如图,AB为⊙O的直径,C为⊙O上的一动点(不与A、B重合),CD⊥AB于D,∠OCD的平分线交⊙O于P,则当C在⊙O上运动时,点P的位置( )
A.随点C的运动而变化
B.不变
C.在使PA=OA的劣弧上
D.无法确定
9.如图,从一块圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A、B、C在圆周上, 将剪下的扇形作为一个圆锥侧面,如果圆锥的高为,则这块圆形纸片的直径为( )
A.12cm B.20cm C.24cm D.28cm
10.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开若不考虑接缝,它是一个半径为12cm,圆心角为的扇形,则
A.圆锥形冰淇淋纸套的底面半径为4cm
B.圆锥形冰淇淋纸套的底面半径为6cm
C.圆锥形冰淇淋纸套的高为
D.圆锥形冰淇淋纸套的高为
二、填空题(共7小题,每小题3分,满分21分)
11.如图,已知直线m∥n,∠1=100°,则∠2的度数为_____.
12.含角30°的直角三角板与直线,的位置关系如图所示,已知,∠1=60°,以下三个结论中正确的是____(只填序号).
①AC=2BC ②△BCD为正三角形 ③AD=BD
13.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.
14.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是_____.
15.如图,点G是△ABC的重心,CG的延长线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°得到△BDE,△ABC的面积=_____cm1.
16.已知线段AB=10cm,C为线段AB的黄金分割点(AC>BC),则BC=_____.
17.阅读下面材料:
在数学课上,老师提出如下问题:
小亮的作法如下:
老师说:“小亮的作法正确”
请回答:小亮的作图依据是______.
三、解答题(共7小题,满分69分)
18.(10分)如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.
(1)求证:四边形OCED是菱形;
(2)若∠BAC=30°,AC=4,求菱形OCED的面积.
19.(5分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
求证:△AEF≌△DEB;证明四边形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD 的面积.
20.(8分)如图,∠A=∠D,∠B=∠E,AF=DC.求证:BC=EF.
21.(10分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.
(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;
(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?
22.(10分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.
(1)求证:△AGE≌△BGF;
(2)试判断四边形AFBE的形状,并说明理由.
23.(12分)某校对学生就“食品安全知识”进行了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整)。请根据图中信息,解答下列问题:
(1)根据图中数据,求出扇形统计图中的值,并补全条形统计图。
(2)该校共有学生900人,估计该校学生对“食品安全知识”非常了解的人数.
24.(14分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:
(1)本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____ ;
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
直接利用概率的意义以及随机事件的定义分别分析得出答案.
【详解】
A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;
B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;
C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;
D、“a是实数,|a|≥0”是必然事件,故此选项错误.
故选C.
【点睛】
此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.
2、A
【解析】
根据有理数的减法,即可解答.
【详解】
故选A.
【点睛】
本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相
反数.
3、B
【解析】
根据实数与数轴上的点存在一一对应关系解答.
【详解】
实数与数轴上的点存在一一对应关系,
故选:B.
【点睛】
本题考查了实数与数轴上点的关系,每一个实数都可以用数轴上唯一的点来表示,反过来,数轴上的每个点都表示一个唯一的实数,也就是说实数与数轴上的点一一对应.
4、B
【解析】试题解析:水涨船高是必然事件,A不正确;
守株待兔是随机事件,B正确;
水中捞月是不可能事件,C不正确
缘木求鱼是不可能事件,D不正确;
故选B.
考点:随机事件.
5、B
【解析】
根据俯视图是从上面看到的图形解答即可.
【详解】
从上面看是三个长方形,故B是该几何体的俯视图.
故选B.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
6、A
【解析】
∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,
∴点P的坐标为(3,﹣4).
故选A.
7、C
【解析】
试题分析:把方程的解代入方程,可以求出字母系数a的值.
∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.
故本题选C.
【考点】一元二次方程的解;一元二次方程的定义.
8、B
【解析】
因为CP是∠OCD的平分线,所以∠DCP=∠OCP,所以∠DCP=∠OPC,则CD∥OP,所以弧AP等于弧BP,所以PA=PB.从而可得出答案.
【详解】
解:连接OP,
∵CP是∠OCD的平分线,
∴∠DCP=∠OCP,
又∵OC=OP,
∴∠OCP=∠OPC,
∴∠DCP=∠OPC,
∴CD∥OP,
又∵CD⊥AB,
∴OP⊥AB,
∴,
∴PA=PB.
∴点P是线段AB垂直平分线和圆的交点,
∴当C在⊙O上运动时,点P不动.
故选:B.
【点睛】
本题考查了圆心角、弦、弧之间的关系,以及平行线的判定和性质,在同圆或等圆中,等弧对等弦.
9、C
【解析】
设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,利用等腰直径三角形的性质得到AB=R,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2πr=,解得r=R,然后利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即可得到这块圆形纸片的直径.
【详解】
设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,则AB=R,根据题意得:
2πr=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以这块圆形纸片的直径为24cm.
故选C.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
10、C
【解析】
根据圆锥的底面周长等于侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高.
【详解】
解:半径为12cm,圆心角为的扇形弧长是:,
设圆锥的底面半径是rcm,
则,
解得:.
即这个圆锥形冰淇淋纸套的底面半径是2cm.
圆锥形冰淇淋纸套的高为.
故选:C.
【点睛】
本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:
圆锥的母线长等于侧面展开图的扇形半径;
圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、80°.
【解析】
如图,已知m∥n,根据平行线的性质可得∠1=∠3,再由平角的定义即可求得∠2的度数.
【详解】
如图,
∵m∥n,
∴∠1=∠3,
∵∠1=100°,
∴∠3=100°,
∴∠2=180°﹣100°=80°,
故答案为80°.
【点睛】
本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键.
12、②③
【解析】
根据平行线的性质以及等边三角形的性质即可求出答案.
【详解】
由题意可知:∠A=30°,∴AB=2BC,故①错误;
∵l1∥l2,∴∠CDB=∠1=60°.
∵∠CBD=60°,∴△BCD是等边三角形,故②正确;
∵△BCD是等边三角形,∴∠BCD=60°,∴∠ACD=∠A=30°,∴AD=CD=BD,故③正确.
故答案为②③.
【点睛】
本题考查了平行的性质以及等边三角形的性质,解题的关键是熟练运用平行线的性质,等边三角形的性质,含30度角的直角三角形的性质,本题属于中等题型.
13、40°
【解析】
直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.
【详解】
如图所示:
∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,
∵∠1+∠2+∠3+∠4=220°,
∴∠1+∠2+∠6+∠3+∠4+∠7=360°,
∴∠6+∠7=140°,
∴∠5=180°-(∠6+∠7)=40°.
故答案为40°.
【点睛】
主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.
14、35°
【解析】
分析:先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°-∠3代入数据进行计算即可得解.
详解:∵直尺的两边互相平行,∠1=25°,
∴∠3=∠1=25°,
∴∠2=60°-∠3=60°-25°=35°.
故答案为35°.
点睛:本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.
15、18
【解析】
三角形的重心是三条中线的交点,根据中线的性质,S△ACD=S△BCD;再利用勾股定理逆定理证明BG⊥CE,从而得出△BCD的高,可求△BCD的面积.
【详解】
∵点G是△ABC的重心,
∴
∵GB=3,EG=GC=4,BE=GA=5,
∴,即BG⊥CE,
∵CD为△ABC的中线,
∴
∴
故答案为:18.
【点睛】
考查三角形重心的性质,中线的性质,旋转的性质,勾股定理逆定理等,综合性比较强,对学生要求较高.
16、(15-5).
【解析】
试题解析:∵C为线段AB的黄金分割点(AC>BC),
∴AC=AB=AC=×10=5-5,
∴BC=AB-AC=10-(5-5)=(15-5)cm.
考点:黄金分割.
17、两点确定一条直线;同圆或等圆中半径相等
【解析】
根据尺规作图的方法,两点之间确定一条直线的原理即可解题.
【详解】
解:∵两点之间确定一条直线,CD和AB都是圆的半径,
∴AB=CD,依据是两点确定一条直线;同圆或等圆中半径相等.
【点睛】
本题考查了尺规作图:一条线段等于已知线段,属于简单题,熟悉尺规作图方法是解题关键.
三、解答题(共7小题,满分69分)
18、(1)证明见解析;(1).
【解析】
(1)由平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(1)解直角三角形求出BC=1.AB=DC=1,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=1,求出OE=1OF=1,求出菱形的面积即可.
【详解】
证明:,,
四边形OCED是平行四边形,
矩形ABCD,,,,
,
四边形OCED是菱形;
在矩形ABCD中,,,,
,
,
连接OE,交CD于点F,
四边形OCED为菱形,
为CD中点,
为BD中点,
,
,
.
【点睛】
本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.
19、(1)证明详见解析;(2)证明详见解析;(3)1.
【解析】
(1)利用平行线的性质及中点的定义,可利用AAS证得结论;
(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.
【详解】
(1)证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
∵AD为BC边上的中线
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,E是AD的中点,
∴AD=DC=BC,
∴四边形ADCF是菱形;
(3)连接DF,
∵AF∥BD,AF=BD,
∴四边形ABDF是平行四边形,
∴DF=AB=5,
∵四边形ADCF是菱形,
∴S菱形ADCF=AC▪DF=×4×5=1.
【点睛】
本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.
20、证明见解析.
【解析】
想证明BC=EF,可利用AAS证明△ABC≌△DEF即可.
【详解】
解:∵AF=DC,
∴AF+FC=FC+CD,
∴AC=FD,
在△ABC 和△DEF 中,
∴△ABC≌△DEF(AAS)
∴BC=EF.
【点睛】
本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
21、(1)20%;(2)12.1.
【解析】
试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7100(1+x)2本,即可列方程求解;
(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.
试题解析:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得
7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).
答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;
(2)10800(1+0.2)=12960(本)
10800÷1310=8(本)
12960÷1440=9(本)
(9﹣8)÷8×100%=12.1%.
故a的值至少是12.1.
考点:一元二次方程的应用;一元一次不等式的应用;最值问题;增长率问题.
22、 (1)证明见解析(2)四边形AFBE是菱形
【解析】
试题分析:(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF即可;
(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.
试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);
(2)解:四边形AFBE是菱形,理由如下:
∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.
考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.
23、(1),补全条形统计图见解析;(2)该校学生对“食品安全知识”非常了解的人数为135人。
【解析】
试题分析:
(1)由统计图中的信息可知,B组学生有32人,占总数的40%,由此可得被抽查学生总人数为:32÷40%=80(人),结合C组学生有28人可得:m%=28÷80×100%=35%,由此可得m=35;由80-32-28-8=12(人)可知A组由12人,由此即可补全条形统计图了;
(2)由(1)中计算可知,A组有12名学生,占总数的12÷80×100%=15%,结合全校总人数为900可得900×15%=135(人),即全校“非常了解”“食品安全知识”的有135人.
试题解析:
(1)由已知条件可得:被抽查学生总数为32÷40%=80(人),
∴m%=28÷80×100%=35%,
∴m=35,
A组人数为:80-32-28-8=12(人),
将图形统计图补充完整如下图所示:
(2)由题意可得:900×(12÷80×100%)=900×15%=135(人).
答:全校学生对“食品安全知识”非常了解的人数为135人.
24、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;
【解析】
(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.
(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.
(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.
【详解】
(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,
m=100﹣(24+48+8+8)=12,
故答案为250、12;
(2)平均数为=1.38(h),
众数为1.5h,中位数为=1.5h;
(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.
【点睛】
本题主要考查数据的收集、 处理以及统计图表.
2022年广西崇左市中考数学真题卷(含解析): 这是一份2022年广西崇左市中考数学真题卷(含解析),共18页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。
广西省桂林市名校2021-2022学年中考押题数学预测卷含解析: 这是一份广西省桂林市名校2021-2022学年中考押题数学预测卷含解析,共22页。试卷主要包含了答题时请按要求用笔,下列说法中,错误的是,要使式子有意义,的取值范围是等内容,欢迎下载使用。
广西壮族自治区崇左市2021-2022学年中考数学押题试卷含解析: 这是一份广西壮族自治区崇左市2021-2022学年中考数学押题试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列命题中,真命题是,cs30°=等内容,欢迎下载使用。