|试卷下载
终身会员
搜索
    上传资料 赚现金
    广东省深圳市坪山区2022年中考数学仿真试卷含解析
    立即下载
    加入资料篮
    广东省深圳市坪山区2022年中考数学仿真试卷含解析01
    广东省深圳市坪山区2022年中考数学仿真试卷含解析02
    广东省深圳市坪山区2022年中考数学仿真试卷含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省深圳市坪山区2022年中考数学仿真试卷含解析

    展开
    这是一份广东省深圳市坪山区2022年中考数学仿真试卷含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,不等式组的解集为等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列计算正确的是(  )
    A.a2+a2=2a4 B.(﹣a2b)3=﹣a6b3 C.a2•a3=a6 D.a8÷a2=a4
    2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0,②当﹣1≤x≤3时,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函数图象上,当0<x1<x2时,y1<y2,其中正确的是(  )

    A.①②④ B.①③ C.①②③ D.①③④
    3.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM的长为(  )

    A.2 B.2 C. D.4
    4.如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是(  )

    A. B. C. D.
    5.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为(  )

    A.3a+2b B.3a+4b C.6a+2b D.6a+4b
    6.下列计算正确的是(  )
    A.2a2﹣a2=1 B.(ab)2=ab2 C.a2+a3=a5 D.(a2)3=a6
    7.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是( )

    A.的长 B.的长 C.的长 D.的长
    8.二次函数y=a(x-4)2-4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为(   )
    A.1     B.-1   C.2    D.-2
    9.不等式组的解集为.则的取值范围为( )
    A. B. C. D.
    10.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大.
    A.3 B.4 C.5 D.6
    11.下列命题是真命题的是(  )
    A.一组对边平行,另一组对边相等的四边形是平行四边形
    B.两条对角线相等的四边形是平行四边形
    C.两组对边分别相等的四边形是平行四边形
    D.平行四边形既是中心对称图形,又是轴对称图形
    12.若(x﹣1)0=1成立,则x的取值范围是(  )
    A.x=﹣1 B.x=1 C.x≠0 D.x≠1
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.计算:________.
    14.一辆汽车在坡度为的斜坡上向上行驶130米,那么这辆汽车的高度上升了__________米.
    15.在今年的春节黄金周中,全国零售和餐饮企业实现销售额约9260亿元,比去年春节黄金周增长10.2%,将9260亿用科学记数法表示为_____________.
    16.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,…,它们的横坐标依次为2,4,6,8,…分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S1,S2,S3,…,Sn,则S1+S2+S3+…+Sn=_____(用含n的代数式表示)

    17.在矩形ABCD中,AB=6CM,E为直线CD上一点,连接AC,BE,若AC与BE交与点F, DE=2,则EF:BE= ________ 。
    18.如图,点A、B、C是⊙O上的三点,且△AOB是正三角形,则∠ACB的度数是 。
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某公司10名销售员,去年完成的销售额情况如表:
    销售额(单位:万元)
    3
    4
    5
    6
    7
    8
    10
    销售员人数(单位:人)
    1
    3
    2
    1
    1
    1
    1
    (1)求销售额的平均数、众数、中位数;
    (2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?
    20.(6分)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.求反比例函数y=的表达式;求点B的坐标;求△OAP的面积.

    21.(6分)九(3)班“2017年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.
    (1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,求小芳获奖的概率.
    (2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们获奖的机会相等吗?通过树状图分析说明理由.
    22.(8分)(操作发现)
    (1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.
    ①求∠EAF的度数;
    ②DE与EF相等吗?请说明理由;
    (类比探究)
    (2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:
    ①∠EAF的度数;
    ②线段AE,ED,DB之间的数量关系.

    23.(8分)如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别交于E、F.
    (1)证明:△BOE≌△DOF;
    (2)当EF⊥AC时,求证四边形AECF是菱形.

    24.(10分)如图1,抛物线y=ax2+bx﹣2与x轴交于点A(﹣1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).
    (1)求该抛物线的解析式;
    (2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;
    (3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.

    25.(10分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=1.

    (1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.
    i)求证:△CAE∽△CBF;
    ii)若BE=1,AE=2,求CE的长;
    (2)如图②,当四边形ABCD和EFCG均为矩形,且时,若BE=1,AE=2,CE=3,求k的值;
    (3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)
    26.(12分)综合与实践﹣﹣﹣折叠中的数学
    在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究.
    问题背景:
    在矩形ABCD中,点E、F分别是BC、AD 上的动点,且BE=DF,连接EF,将矩形ABCD沿EF折叠,点C落在点C′处,点D落在点D′处,射线EC′与射线DA相交于点M.
    猜想与证明:
    (1)如图1,当EC′与线段AD交于点M时,判断△MEF的形状并证明你的结论;
    操作与画图:
    (2)当点M与点A重合时,请在图2中作出此时的折痕EF和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);
    操作与探究:
    (3)如图3,当点M在线段DA延长线上时,线段C′D'分别与AD,AB交于P,N两点时,C′E与AB交于点Q,连接MN 并延长MN交EF于点O.
    求证:MO⊥EF 且MO平分EF;
    (4)若AB=4,AD=4,在点E由点B运动到点C的过程中,点D'所经过的路径的长为   .

    27.(12分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.
    (参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    解:A.a2+a2=2a2,故A错误;
    C、a2a3=a5,故C错误;
    D、a8÷a2=a6,故D错误;
    本题选B.
    考点:合同类型、同底数幂的乘法、同底数幂的除法、积的乘方
    2、B
    【解析】
    ∵函数图象的对称轴为:x=-==1,∴b=﹣2a,即2a+b=0,①正确;
    由图象可知,当﹣1<x<3时,y<0,②错误;
    由图象可知,当x=1时,y=0,∴a﹣b+c=0,
    ∵b=﹣2a,∴3a+c=0,③正确;
    ∵抛物线的对称轴为x=1,开口方向向上,
    ∴若(x1,y1)、(x2,y2)在函数图象上,当1<x1<x2时,y1<y2;当x1<x2<1时,y1>y2;
    故④错误;
    故选B.
    点睛:本题主要考查二次函数的相关知识,解题的关键是:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理.
    3、B
    【解析】
    分析:连接OC、OB,证出△BOC是等边三角形,根据锐角三角函数的定义求解即可.
    详解:
    如图所示,连接OC、OB

    ∵多边形ABCDEF是正六边形,
    ∴∠BOC=60°,
    ∵OC=OB,
    ∴△BOC是等边三角形,
    ∴∠OBM=60°,
    ∴OM=OBsin∠OBM=4×=2.
    故选B.
    点睛:考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.
    4、D
    【解析】
    试题分析:根据三视图的法则可知B为俯视图,D为主视图,主视图为一个正方形.
    5、A
    【解析】
    根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.
    【详解】
    依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.
    故这块矩形较长的边长为3a+2b.故选A.
    【点睛】
    本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键.
    6、D
    【解析】
    根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.
    【详解】
    A、2a2﹣a2=a2,故A错误;
    B、(ab)2=a2b2,故B错误;
    C、a2与a3不是同类项,不能合并,故C错误;
    D、(a2)3=a6,故D正确,
    故选D.
    【点睛】
    本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.
    7、B
    【解析】
    【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求得AD的长,即可发现结论.
    【解答】用求根公式求得:



    AD的长就是方程的正根.
    故选B.
    【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.
    8、A
    【解析】
    试题分析:根据角抛物线顶点式得到对称轴为直线x=4,利用抛物线对称性得到抛物线在1<x<2这段位于x轴的上方,而抛物线在2<x<3这段位于x轴的下方,于是可得抛物线过点(2,0)然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a=1.
    故选A
    9、B
    【解析】
    求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可.
    【详解】
    解:解不等式组,得.
    ∵不等式组的解集为x<2,
    ∴k+1≥2,
    解得k≥1.
    故选:B.
    【点睛】
    本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中.
    10、C
    【解析】
    解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,
    其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}
    和为2的只有1+1;
    和为3的有1+2;2+1;
    和为1的有1+3;2+2;3+1;
    和为5的有1+1;2+3;3+2;1+1;
    和为6的有2+1;1+2;
    和为7的有3+1;1+3;
    和为8的有1+1.
    故p(5)最大,故选C.
    11、C
    【解析】
    根据平行四边形的五种判定定理(平行四边形的判定方法:①两组对边分别平行的四边形;②两组对角分别相等的四边形;③两组对边分别相等的四边形;④一组对边平行且相等的四边形;⑤对角线互相平分的四边形)和平行四边形的性质进行判断.
    【详解】
    A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;
    B、两条对角线互相平分的四边形是平行四边形.故本选项错误;
    C、两组对边分别相等的四边形是平行四边形.故本选项正确;
    D、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;
    故选:C.
    【点睛】
    考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
    12、D
    【解析】
    试题解析:由题意可知:x-1≠0,
    x≠1
    故选D.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    根据二次根式的运算法则先算乘法,再将分母有理化,然后相加即可.
    【详解】
    解:原式=
    =
    【点睛】
    本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    14、50.
    【解析】
    根据坡度的定义可以求得AC、BC的比值,根据AC、BC的比值和AB的长度即可求得AC的值,即可解题.
    【详解】
    解:如图,米


    设,则,
    则,
    解得,
    故答案为:50.
    【点睛】
    本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题.
    15、9.26×1011
    【解析】试题解析: 9260亿=9.26×1011
    故答案为: 9.26×1011
    点睛: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.
    16、10﹣
    【解析】
    过点P1、点Pn+1作y轴的垂线段,垂足分别是点A、B,过点P1作x轴的垂线段,垂足是点C,P1C交BPn+1于点D,所有的阴影部分平移到左边,阴影部分的面积之和就等于矩形P1ABD的面积,即可得到答案.
    【详解】
    如图,过点P1、点Pn+1作y轴的垂线段,垂足分别是点A、B,过点P1作x轴的垂线段,垂足是点C,P1C交BPn于点D,
    则点Pn+1的坐标为(2n+2,),
    则OB=,
    ∵点P1的横坐标为2,
    ∴点P1的纵坐标为5,
    ∴AB=5﹣,
    ∴S1+S2+S3+…+Sn=S矩形AP1DB=2(5﹣)=10﹣,
    故答案为10﹣.

    【点睛】
    本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,解题的关键是掌握过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|.
    17、4:7或2:5
    【解析】
    根据E在CD上和CD的延长线上,运用相似三角形分类讨论即可.
    【详解】
    解:当E在线段CD上如图:

    ∵矩形ABCD
    ∴AB∥CD
    ∴△ABF∽△CFE

    设,即EF=2k,BF=3k
    ∴BE=BF+EF=5k
    ∴EF:BE=2k∶5k=2∶5
    当当E在线段CD的延长线上如图:

    ∵矩形ABCD
    ∴AB∥CD
    ∴△ABF∽△CFE

    设,即EF=4k,BF=3k
    ∴BE=BF+EF=7k
    ∴EF:BE=4k∶7k=4∶7
    故答案为:4:7或2:5.
    【点睛】
    本题以矩形为载体,考查了相似三角形的性质,解题的关键在于根据图形分类讨论,即数形结合的灵活应用.
    18、30°
    【解析】
    试题分析:圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.
    ∵△AOB是正三角形
    ∴∠AOB=60°
    ∴∠ACB=30°.
    考点:圆周角定理
    点评:本题属于基础应用题,只需学生熟练掌握圆周角定理,即可完成.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元.
    【解析】
    (1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数.
    (2)根据平均数,中位数,众数的意义回答.
    【详解】
    解:
    (1)平均数=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元);
    出现次数最多的是4万元,所以众数是4(万元);
    因为第五,第六个数均是5万元,所以中位数是5(万元).
    (2)今年每个销售人员统一的销售标准应是5万元.
    理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成.因此把5万元定为标准比较合理.
    【点睛】
    本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数.
    20、(1)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)△OAP的面积=1.
    【解析】
    (1)将点A的坐标代入解析式求解可得;
    (2)利用勾股定理求得AB=OA=1,由AB∥x轴即可得点B的坐标;
    (3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得.
    【详解】
    (1)将点A(4,3)代入y=,得:k=12,
    则反比例函数解析式为y=;
    (2)如图,过点A作AC⊥x轴于点C,

    则OC=4、AC=3,
    ∴OA==1,
    ∵AB∥x轴,且AB=OA=1,
    ∴点B的坐标为(9,3);
    (3)∵点B坐标为(9,3),
    ∴OB所在直线解析式为y=x,
    由可得点P坐标为(6,2),(负值舍去),
    过点P作PD⊥x轴,延长DP交AB于点E,
    则点E坐标为(6,3),
    ∴AE=2、PE=1、PD=2,
    则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=1.
    【点睛】
    本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.
    21、(1);(2)他们获奖机会不相等,理由见解析.
    【解析】
    (1)根据正面有2张笑脸、2张哭脸,直接利用概率公式求解即可求得答案;(2)根据题意分别列出表格,然后由表格即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率.
    【详解】
    (1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,
    ∴获奖的概率是;
    故答案为;
    (2)他们获奖机会不相等,理由如下:
    小芳:

    笑1
    笑2
    哭1
    哭2
    笑1
    笑1,笑1
    笑2,笑1
    哭1,笑1
    哭2,笑1
    笑2
    笑1,笑2
    笑2,笑2
    哭1,笑2
    哭2,笑2
    哭1
    笑1,哭1
    笑2,哭1
    哭1,哭1
    哭2,哭1
    哭2
    笑1,哭2
    笑2,哭2
    哭1,哭2
    哭2,哭2
    ∵共有16种等可能的结果,翻开的两张纸牌中只要出现笑脸的有12种情况,
    ∴P(小芳获奖)=;
    小明:

    笑1
    笑2
    哭1
    哭2
    笑1

    笑2,笑1
    哭1,笑1
    哭2,笑1
    笑2
    笑1,笑2

    哭1,笑2
    哭2,笑2
    哭1
    笑1,哭1
    笑2,哭1

    哭2,哭1
    哭2
    笑1,哭2
    笑2,哭2
    哭1,哭2

    ∵共有12种等可能的结果,翻开的两张纸牌中只要出现笑脸的有10种情况,
    ∴P(小明获奖)=,
    ∵P(小芳获奖)≠P(小明获奖),
    ∴他们获奖的机会不相等.
    【点睛】
    本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
    22、(1)①110°②DE=EF;(1)①90°②AE1+DB1=DE1
    【解析】
    试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=110°;
    ②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;
    (1)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;
    ②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE1+AF1=EF1,即可得出结论.
    试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.
    在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=110°;
    ②DE=EF.理由如下:
    ∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;
    (1)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;
    ②AE1+DB1=DE1,理由如下:
    ∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,AE1+AF1=EF1,又∵AF=DB,∴AE1+DB1=DE1.
    23、(1)(2)证明见解析
    【解析】
    (1)根据矩形的性质,通过“角角边”证明三角形全等即可;
    (2)根据题意和(1)可得AC与EF互相垂直平分,所以四边形AECF是菱形.
    【详解】
    (1)证明:∵四边形ABCD是矩形,
    ∴OB=OD,AE∥CF,
    ∴∠E=∠F(两直线平行,内错角相等),
    在△BOE与△DOF中,

    ∴△BOE≌△DOF(AAS).
    (2)

    证明:∵四边形ABCD是矩形,
    ∴OA=OC,
    又∵由(1)△BOE≌△DOF得,OE=OF,
    ∴四边形AECF是平行四边形,
    又∵EF⊥AC,
    ∴四边形AECF是菱形.
    24、(1)y=x2﹣x﹣2;(2)9;(3)Q坐标为(﹣)或(4﹣)或(2,1)或(4+,﹣).
    【解析】
    试题分析:把点代入抛物线,求出的值即可.
    先用待定系数法求出直线BE的解析式,进而求得直线AD的解析式,设则表示出,用配方法求出它的最大值,
    联立方程求出点的坐标, 最大值=,
    进而计算四边形EAPD面积的最大值;
    分两种情况进行讨论即可.
    试题解析:(1)∵在抛物线上,

    解得
    ∴抛物线的解析式为
    (2)过点P作轴交AD于点G,


    ∴直线BE的解析式为
    ∵AD∥BE,设直线AD的解析式为 代入,可得
    ∴直线AD的解析式为
    设则

    ∴当x=1时,PG的值最大,最大值为2,
    由 解得 或

    ∴ 最大值=

    ∵AD∥BE,

    ∴S四边形APDE最大=S△ADP最大+
    (3)①如图3﹣1中,当时,作于T.





    可得
    ②如图3﹣2中,当时,
    当时,
    当时,Q3
    综上所述,满足条件点点Q坐标为或或或
    25、(1)i)证明见试题解析;ii);(2);(3).
    【解析】
    (1)i)由∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,得到∠ACE=∠BCF,又由于,故△CAE∽△CBF;
    ii)由,得到BF=,再由△CAE∽△CBF,得到∠CAE=∠CBF,进一步可得到∠EBF=1°,从而有,解得;
    (2)连接BF,同理可得:∠EBF=1°,由,得到,,故,从而,得到,代入解方程即可;
    (3)连接BF,同理可得:∠EBF=1°,过C作CH⊥AB延长线于H,可得:
    ,,
    故,
    从而有.
    【详解】
    解:(1)i)∵∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,∴∠ACE=∠BCF,又∵,∴△CAE∽△CBF;
    ii)∵,∴BF=,∵△CAE∽△CBF,∴∠CAE=∠CBF,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴,解得;
    (2)连接BF,同理可得:∠EBF=1°,∵,∴,,∴,∴,,∴,∴,解得;
    (3)连接BF,同理可得:∠EBF=1°,过C作CH⊥AB延长线于H,可得:
    ,,
    ∴,
    ∴.

    【点睛】
    本题考查相似三角形的判定与性质;正方形的性质;矩形的性质;菱形的性质.
    26、(1)△MEF是等腰三角形(2)见解析(3)证明见解析(4)
    【解析】
    (1)由AD∥BC,可得∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,依据∠MFE=∠MEF,即可得到ME=MF,进而得出△MEF是等腰三角形;
    (2)作AC的垂直平分线,即可得到折痕EF,依据轴对称的性质,即可得到D'的位置;
    (3)依据△BEQ≌△D'FP,可得PF=QE,依据△NC'P≌△NAP,可得AN=C'N,依据Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,进而得到△MEF是等腰三角形,依据三线合一,即可得到MO⊥EF 且MO平分EF;
    (4)依据点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,即可得到点D'所经过的路径的长.
    【详解】
    (1)△MEF是等腰三角形.
    理由:∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠MFE=∠CEF,
    由折叠可得,∠MEF=∠CEF,
    ∴∠MFE=∠MEF,
    ∴ME=MF,
    ∴△MEF是等腰三角形.
    (2)折痕EF和折叠后的图形如图所示:

    (3)如图,

    ∵FD=BE,
    由折叠可得,D'F=DF,
    ∴BE=D'F,
    在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,
    ∴∠C'QN=∠APN,
    ∵∠C'QN=∠BQE,∠APN=∠D'PF,
    ∴∠BQE=∠D'PF,
    在△BEQ和△D'FP中,

    ∴△BEQ≌△D'FP(AAS),
    ∴PF=QE,
    ∵四边形ABCD是矩形,
    ∴AD=BC,
    ∴AD﹣FD=BC﹣BE,
    ∴AF=CE,
    由折叠可得,C'E=EC,
    ∴AF=C'E,
    ∴AP=C'Q,
    在△NC'Q和△NAP中,

    ∴△NC'P≌△NAP(AAS),
    ∴AN=C'N,
    在Rt△MC'N和Rt△MAN中,

    ∴Rt△MC'N≌Rt△MAN(HL),
    ∴∠AMN=∠C'MN,
    由折叠可得,∠C'EF=∠CEF,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠AFE=∠FEC,
    ∴∠C'EF=∠AFE,
    ∴ME=MF,
    ∴△MEF是等腰三角形,
    ∴MO⊥EF 且MO平分EF;
    (4)在点E由点B运动到点C的过程中,点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,如图:

    故其长为L=.
    故答案为.
    【点睛】
    此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、弧长计算公式,等腰三角形的判定与性质以及全等三角形的判定与性质的综合应用,熟练掌握等腰三角形的判定定理和性质定理是解本题的关键.
    27、1.8米
    【解析】
    设PA=PN=x,Rt△APM中求得=1.6x, 在Rt△BPM中,解得x=3,MN=MP-NP=0.6x=1.8.
    【详解】
    在Rt△APN中,∠NAP=45°,
    ∴PA=PN,
    在Rt△APM中,,
    设PA=PN=x,
    ∵∠MAP=58°,
    ∴=1.6x,
    在Rt△BPM中,,
    ∵∠MBP=31°,AB=5,
    ∴,
    ∴ x=3,
    ∴MN=MP-NP=0.6x=1.8(米),
    答:广告牌的宽MN的长为1.8米.
    【点睛】
    熟练掌握三角函数的定义并能够灵活运用是解题的关键.

    相关试卷

    2023年广东省深圳市坪山区中考数学二模试卷(含解析): 这是一份2023年广东省深圳市坪山区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年广东省深圳市坪山区中考数学二模试卷(含解析): 这是一份2023年广东省深圳市坪山区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年广东省深圳市坪山区中考数学一模试卷(含解析): 这是一份2023年广东省深圳市坪山区中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map