广西防城岗市防城区2021-2022学年中考五模数学试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( )
A. B. C. D.
2.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为( )
A.85° B.75° C.60° D.30°
3.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为
A. B.3 C.1 D.
4.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为( )
A. B.π C.2π D.3π
5.如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC, 且DE=AC,连接CE、OE,连接AE,交OD于点F,若AB=2,∠ABC=60°,则AE的长为( )
A. B. C. D.
6.若3x>﹣3y,则下列不等式中一定成立的是 ( )
A. B. C. D.
7.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )
A.球不会过网 B.球会过球网但不会出界
C.球会过球网并会出界 D.无法确定
8.如图是一个由5个相同的正方体组成的立体图形,它的俯视图是( )
A. B. C. D.
9.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )
A.60海里 B.45海里 C.20海里 D.30海里
10.3的相反数是( )
A.﹣3 B.3 C. D.﹣
二、填空题(共7小题,每小题3分,满分21分)
11.已知边长为5的菱形中,对角线长为6,点在对角线上且,则的长为__________.
12.计算:=_________ .
13.计算=_____.
14.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则BE:BC的值为_________.
15.若关于x的方程有两个相等的实数根,则m的值是_________.
16.已知扇形的弧长为2,圆心角为60°,则它的半径为________.
17.因式分解:3x3﹣12x=_____.
三、解答题(共7小题,满分69分)
18.(10分)我市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标.建筑面积7200平方米,为我国西北第一高阁.秦汉高台门阙的建筑风格,追求稳定之中的飞扬灵动,深厚之中的巧妙组合,使景观功能和标志功能融为一体.小亮想知道石鼓阁的高是多少,他和同学李梅对石鼓阁进行测量.测量方案如下:如图,李梅在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,李梅看着镜面上的标记,她来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得李梅眼睛与地面的高度ED=1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.4米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.7米,影长FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度.
19.(5分)如图①,一次函数y=x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=x2+bx+c的图象经过A、B两点,与x轴交于另一点C.
(1)求二次函数的关系式及点C的坐标;
(2)如图②,若点P是直线AB上方的抛物线上一点,过点P作PD∥x轴交AB于点D,PE∥y轴交AB于点E,求PD+PE的最大值;
(3)如图③,若点M在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点M的坐标.
20.(8分)解不等式 ,并把它的解集表示在数轴上.
21.(10分)计算: ÷ – + 20180
22.(10分)主题班会上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:
A.放下自我,彼此尊重; B.放下利益,彼此平衡;
C.放下性格,彼此成就; D.合理竞争,合作双赢.
要求每人选取其中一个观点写出自己的感悟.根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:
观点
频数
频率
A
a
0.2
B
12
0.24
C
8
b
D
20
0.4
(1)参加本次讨论的学生共有 人;表中a= ,b= ;
(2)在扇形统计图中,求D所在扇形的圆心角的度数;
(3)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.
23.(12分)如图,一根电线杆PQ直立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,求电线杆PQ的高度.(结果保留根号).
24.(14分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?
小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.
下面是小林的探究过程,请补充完整:
(1)画出几何图形,明确条件和探究对象;
如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.
(2)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm
0
1
2
3
4
5
6
y/cm
6.9
5.3
4.0
3.3
4.5
6
(说明:补全表格时相关数据保留一位小数)
(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为 cm.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
A,B,C只能通过旋转得到,D既可经过平移,又可经过旋转得到,故选D.
2、B
【解析】
分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.
详解:∵AB∥CD,
∴∠C=∠ABC=30°,
又∵CD=CE,
∴∠D=∠CED,
∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,
∴∠D=75°.
故选B.
点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.
3、A
【解析】
首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可
【详解】
∵AB=3,AD=4,∴DC=3
∴根据勾股定理得AC=5
根据折叠可得:△DEC≌△D′EC,
∴D′C=DC=3,DE=D′E
设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,
在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,
解得:x=
故选A.
4、A
【解析】
根据旋转的性质和弧长公式解答即可.
【详解】
解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,
∴∠AOC=90°,
∵OC=3,
∴点A经过的路径弧AC的长== ,
故选:A.
【点睛】
此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.
5、C
【解析】
在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形,∵AC⊥BD,∴平行四边形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC为等边三角形,∴AD=AB=AC=2,OA=AC=1,
在矩形OCED中,由勾股定理得:CE=OD=,
在Rt△ACE中,由勾股定理得:AE=;故选C.
点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.
6、A
【解析】
两边都除以3,得x>﹣y,两边都加y,得:x+y>0,
故选A.
7、C
【解析】
分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.
详解:根据题意,将点A(0,2)代入
得:36a+2.6=2,
解得:
∴y与x的关系式为
当x=9时,
∴球能过球网,
当x=18时,
∴球会出界.
故选C.
点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.
8、C
【解析】
根据俯视图的概念可知, 只需找到从上面看所得到的图形即可.
【详解】
解: 从上面看易得: 有2列小正方形, 第1列有2个正方形, 第2列有2个正方形,故选C.
【点睛】
考查下三视图的概念; 主视图、 左视图、 俯视图是分别从物体正面、 左面和上面看所得到的图形;
9、D
【解析】
根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.
【详解】
解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,
故AB=2AP=60(海里),
则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)
故选:D.
【点睛】
此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.
10、A
【解析】
试题分析:根据相反数的概念知:1的相反数是﹣1.
故选A.
【考点】相反数.
二、填空题(共7小题,每小题3分,满分21分)
11、3或1
【解析】
菱形ABCD中,边长为1,对角线AC长为6,由菱形的性质及勾股定理可得AC⊥BD,BO=4,分当点E在对角线交点左侧时(如图1)和当点E在对角线交点左侧时(如图2)两种情况求BE得长即可.
【详解】
解:当点E在对角线交点左侧时,如图1所示:
∵菱形ABCD中,边长为1,对角线AC长为6,
∴AC⊥BD,BO= =4,
∵tan∠EAC=,
解得:OE=1,
∴BE=BO﹣OE=4﹣1=3,
当点E在对角线交点左侧时,如图2所示:
∵菱形ABCD中,边长为1,对角线AC长为6,
∴AC⊥BD,BO==4,
∵tan∠EAC=,
解得:OE=1,
∴BE=BO﹣OE=4+1=1,
故答案为3或1.
【点睛】
本题主要考查了菱形的性质,解决问题时要注意分当点E在对角线交点左侧时和当点E在对角线交点左侧时两种情况求BE得长.
12、2
【解析】
利用平方差公式求解,即可求得答案.
【详解】
=()2-()2=5-3=2.
故答案为2.
【点睛】
此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.
13、0
【解析】
分析:先计算乘方、零指数幂,再计算加减可得结果.
详解:1-1=0
故答案为0.
点睛:零指数幂成立的条件是底数不为0.
14、1:4
【解析】
由S△BDE:S△CDE=1:3,得到 ,于是得到 .
【详解】
解: 两个三角形同高,底边之比等于面积比.
故答案为
【点睛】
本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键.
15、m=-
【解析】
根据题意可以得到△=0,从而可以求得m的值.
【详解】
∵关于x的方程有两个相等的实数根,
∴△=,
解得:.
故答案为.
16、6.
【解析】
分析: 设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.
详解: 设扇形的半径为r,
根据题意得:,
解得 :r=6
故答案为6.
点睛: 此题考查弧长公式,关键是根据弧长公式解答.
17、3x(x+2)(x﹣2)
【解析】
先提公因式3x,然后利用平方差公式进行分解即可.
【详解】
3x3﹣12x
=3x(x2﹣4)
=3x(x+2)(x﹣2),
故答案为3x(x+2)(x﹣2).
【点睛】
本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
三、解答题(共7小题,满分69分)
18、 “石鼓阁”的高AB的长度为56m.
【解析】
根据题意得∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,再根据反射定律可知:∠ACB=∠ECD,则△ABC∽△EDC,根据相似三角形的性质可得=,再根据∠AHB=∠GHF,可证△ABH∽△GFH,同理得=,代入数值计算即可得出结论.
【详解】
由题意可得:∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,
由反射定律可知:∠ACB=∠ECD,
则△ABC∽△EDC,
∴=,
即=①,
∵∠AHB=∠GHF,
∴△ABH∽△GFH,
∴=,即=②,
联立①②,解得:AB=56,
答:“石鼓阁”的高AB的长度为56m.
【点睛】
本题考查了相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.
19、(1)二次函数的关系式为y=;C(1,0);(2)当m=2时,PD+PE有最大值3;(3)点M的坐标为(,)或(,).
【解析】
(1)先求出A、B的坐标,然后把A、B的坐标分别代入二次函数的解析式,解方程组即可得到结论;
(2)先证明△PDE∽△OAB,得到PD=2PE.设P(m,),则E(m,),PD+PE=3PE,然后配方即可得到结论.
(3)分两种情况讨论:①当点M在在直线AB上方时,则点M在△ABC的外接圆上,如图1.求出圆心O1的坐标和半径,利用MO1=半径即可得到结论.
②当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.求出点O2的坐标,算出DM的长,即可得到结论.
【详解】
解:(1)令y==0,得:x=4,∴A(4,0).
令x=0,得:y=-2,∴B(0,-2).
∵二次函数y=的图像经过A、B两点,
∴,解得:,
∴二次函数的关系式为y=.
令y==0,解得:x=1或x=4,∴C(1,0).
(2)∵PD∥x轴,PE∥y轴,
∴∠PDE=∠OAB,∠PED=∠OBA,
∴△PDE∽△OAB.∴===2,
∴PD=2PE.设P(m,),
则E(m,).
∴PD+PE=3PE=3×[()-()]==.
∵0<m<4,∴当m=2时,PD+PE有最大值3.
(3)①当点M在在直线AB上方时,则点M在△ABC的外接圆上,如图1.
∵△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,-t).
∴=,解得:t=2,
∴圆心O1的坐标为(,-2),∴半径为.
设M(,y).∵MO1=,∴,
解得:y=,∴点M的坐标为().
②当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.
∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x轴,∴∠O1BA=∠OAB,
∴∠O1AB=∠OAB,O2在x轴上,∴点O2的坐标为 (,0),∴O2D=1,
∴DM==,∴点M的坐标为(,).
综上所述:点M的坐标为(,)或(,).
点睛:本题是二次函数的综合题.考查了求二次函数的解析式,求二次函数的最值,圆的有关性质.难度比较大,解答第(3)问的关键是求出△ABC外接圆的圆心坐标.
20、x<5;数轴见解析
【解析】
【分析】将(x-2)当做一个整体,先移项,然后再按解一元一次不等式的一般步骤进行求解,求得解集后在数轴上表示即可.
【详解】移项,得 ,
去分母,得 ,
移项,得,
∴不等式的解集为,
在数轴上表示如图所示:
【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,根据不等式的特点选择恰当的方法进行求解是关键.
21、2
【解析】
根据实数的混合运算法则进行计算.
【详解】
解:原式= -( -1)+1=- +1+1=2
【点睛】
此题重点考察学生对实数的混合运算的应用,熟练掌握计算方法是解题的关键.
22、(1)50、10、0.16;(2)144°;(3).
【解析】
(1)由B观点的人数和所占的频率即可求出总人数;由总人数即可求出a、b的值,
(2)用360°乘以D观点的频率即可得;
(3)画出树状图,然后根据概率公式列式计算即可得解
【详解】
解:(1)参加本次讨论的学生共有12÷0.24=50,
则a=50×0.2=10,b=8÷50=0.16,
故答案为50、10、0.16;
(2)D所在扇形的圆心角的度数为360°×0.4=144°;
(3)根据题意画出树状图如下:
由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,
所以选中观点D(合理竞争,合作双赢)的概率为.
【点睛】
此题考查了列表法或树状图法求概率以及条形统计图.用到的知识点为:概率=所求情况数与总情况数之比.
23、(6+)米
【解析】
根据已知的边和角,设CQ=x,BC=QC=x,PC=BC=3x,根据PQ=BQ列出方程求解即可.
【详解】
解:延长PQ交地面与点C,
由题意可得:AB=6m,∠PCA=90°,∠PAC=45°,∠PBC=60°,∠QBC=30°,设CQ=x,则在Rt△BQC中,BC=QC=x,∴在Rt△PBC中PC=BC=3x,∵在Rt△PAC中,∠PAC=45°,则PC=AC,∴,3x=6+x,解得x==3+,∴PQ=PC-CQ=3x-x=2x=6+,则电线杆PQ高为(6+)米.
【点睛】
此题重点考察学生对解直角三角形的理解,掌握解直角三角形的方法是解题的关键.
24、(1)见解析;(1)3.5;(3)见解析; (4)3.1
【解析】
根据题意作图测量即可.
【详解】
(1)取点、画图、测量,得到数据为3.5
故答案为:3.5
(3)由数据得
(4)当△DEF为等边三角形是,EF=DE,由∠B=45°,射线DE⊥BC于点E,则BE=EF.即y=x
所以,当(1)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.1.
【点睛】
本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究.
2022-2023学年广西防城岗市防城区七下数学期末调研模拟试题含答案: 这是一份2022-2023学年广西防城岗市防城区七下数学期末调研模拟试题含答案,共6页。试卷主要包含了一组数据,一次函数的图象不经过,一元二次方程 2x=3的解是等内容,欢迎下载使用。
2023年广西防城港市防城区中考数学二模试卷(含解析): 这是一份2023年广西防城港市防城区中考数学二模试卷(含解析),共20页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2022年广西防城岗市防城区达标名校中考考前最后一卷数学试卷含解析: 这是一份2022年广西防城岗市防城区达标名校中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了如图图形中,是中心对称图形的是,抛物线y=3等内容,欢迎下载使用。