广东省广州市广州中学2021-2022学年中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.某运动会颁奖台如图所示,它的主视图是( )
A. B. C. D.
2.如图,平行四边形ABCD中,点A在反比例函数y=(k≠0)的图象上,点D在y轴上,点B、点C在x轴上.若平行四边形ABCD的面积为10,则k的值是( )
A.﹣10 B.﹣5 C.5 D.10
3.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是( )
A. B. C. D.
4.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为( )
A.0.4×108 B.4×108 C.4×10﹣8 D.﹣4×108
5.方程x2﹣3x+2=0的解是( )
A.x1=1,x2=2 B.x1=﹣1,x2=﹣2
C.x1=1,x2=﹣2 D.x1=﹣1,x2=2
6.如图,中,,,将绕点逆时针旋转得到,使得,延长交于点,则线段的长为( )
A.4 B.5 C.6 D.7
7.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是( )
A.我爱美 B.宜晶游 C.爱我宜昌 D.美我宜昌
8.若分式方程无解,则a的值为( )
A.0 B.-1 C.0或-1 D.1或-1
9.最小的正整数是( )
A.0 B.1 C.﹣1 D.不存在
10.下列图形不是正方体展开图的是( )
A. B.
C. D.
11.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是( )
A.12 B.14 C.16 D.18
12.若关于x的方程 是一元二次方程,则m的取值范围是( )
A.. B.. C. D..
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△PAB=S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为______.
14.如图,点A在反比例函数y=(x>0)上,以OA为边作正方形OABC,边AB交y轴于点P,若PA:PB=1:2,则正方形OABC的面积=_____.
15.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为_____.
16.已知关于x,y的二元一次方程组 的解互为相反数,则k的值是_________.
17.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.
18.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,AD是△ABC的中线,AD=12,AB=13,BC=10,求AC长.
20.(6分)在“打造青山绿山,建设美丽中国”的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具,下表是租车公司提供给学校有关两
种型号客车的载客量和租金信息:
型号
载客量
租金单价
A
30人/辆
380元/辆
B
20人/辆
280元/辆
注:载客量指的是每辆客车最多可载该校师生的人数.
(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式。
(2)若要使租车总费用不超过19720元,一共有几种租车方案?那种租车方案最省钱?
21.(6分)已知:如图,在正方形ABCD中,点E、F分别是AB、BC边的中点,AF与CE交点G,求证:AG=CG.
22.(8分)先化简,再求值:,其中a为不等式组的整数解.
23.(8分)如图,已知点D在反比例函数y=的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=.
(1)求反比例函数y=和直线y=kx+b的解析式;
(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;
(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.
24.(10分)小明遇到这样一个问题:已知:. 求证:.
经过思考,小明的证明过程如下:
∵,∴.∴.接下来,小明想:若把带入一元二次方程(a0),恰好得到.这说明一元二次方程有根,且一个根是.所以,根据一元二次方程根的判别式的知识易证:.
根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目:
已知:. 求证:.请你参考上面的方法,写出小明所编题目的证明过程.
25.(10分)(8分)如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=1.
(1)求直线AB和反比例函数的解析式;
(1)求△OCD的面积.
26.(12分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:
通过这段对话,请你求出该地驻军原来每天加固的米数.
27.(12分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:≈2.449,结果保留整数)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
从正面看到的图形如图所示:
,
故选C.
2、A
【解析】
作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCD=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|−k|,利用反比例函数图象得到.
【详解】
作AE⊥BC于E,如图,
∵四边形ABCD为平行四边形,
∴AD∥x轴,
∴四边形ADOE为矩形,
∴S平行四边形ABCD=S矩形ADOE,
而S矩形ADOE=|−k|,
∴|−k|=1,
∵k<0,
∴k=−1.
故选A.
【点睛】
本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
3、D
【解析】
根据轴对称图形的概念求解.
【详解】
解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.
故选D.
【点睛】
本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形
4、C
【解析】
科学记数法的表示形式为a×10 的形式,其中1≤a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
0.000 000 04=4×10,
故选C
【点睛】
此题考查科学记数法,难度不大
5、A
【解析】
将方程左边的多项式利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.
【详解】
解:原方程可化为:(x﹣1)(x﹣1)=0,
∴x1=1,x1=1.
故选:A.
【点睛】
此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边的多项式分解因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
6、B
【解析】
先利用已知证明,从而得出,求出BD的长度,最后利用求解即可.
【详解】
故选:B.
【点睛】
本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键.
7、C
【解析】
试题分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因为x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C.
考点:因式分解.
8、D
【解析】
试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),
整理得:x(1-a)=2a,
当1-a=0时,即a=1,整式方程无解,
当x+1=0,即x=-1时,分式方程无解,
把x=-1代入x(1-a)=2a得:-(1-a)=2a,
解得:a=-1,
故选D.
点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.
9、B
【解析】
根据最小的正整数是1解答即可.
【详解】
最小的正整数是1.
故选B.
【点睛】
本题考查了有理数的认识,关键是根据最小的正整数是1解答.
10、B
【解析】
由平面图形的折叠及正方体的展开图解题.
【详解】
A、C、D经过折叠均能围成正方体,B折叠后上边没有面,不能折成正方体.
故选B.
【点睛】
此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.
11、C
【解析】
延长线段BN交AC于E.
∵AN平分∠BAC,∴∠BAN=∠EAN.
在△ABN与△AEN中,
∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,
∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.
又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,
∴AC=AE+CE=10+6=16.故选C.
12、A
【解析】
根据一元二次方程的定义可得m﹣1≠0,再解即可.
【详解】
由题意得:m﹣1≠0,
解得:m≠1,
故选A.
【点睛】
此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、4
【解析】
分析:首先由S△PAB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.
详解:设△ABP中AB边上的高是h.
∵S△PAB=S矩形ABCD,
∴AB•h=AB•AD,
∴h=AD=2,
∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.
在Rt△ABE中,∵AB=4,AE=2+2=4,
∴BE=,
即PA+PB的最小值为4.
故答案为4.
点睛:本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.
14、1.
【解析】
根据题意作出合适的辅助线,然后根据正方形的性质和反比例函数的性质,相似三角形的判定和性质、勾股定理可以求得AB的长.
【详解】
解:由题意可得:OA=AB,设AP=a,则BP=2a,OA=3a,设点A的坐标为(m,),作AE⊥x轴于点E.
∵∠PAO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴=,即=,解得:m=1或m=﹣1(舍去),∴点A的坐标为(1,3),∴OA=,∴正方形OABC的面积=OA2=1.
故答案为1.
【点睛】
本题考查了反比例函数图象点的坐标特征、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
15、1
【解析】
解:连接OC,
∵AB为⊙O的直径,AB⊥CD,
∴CE=DE=CD=×6=3,
设⊙O的半径为xcm,
则OC=xcm,OE=OB﹣BE=x﹣1,
在Rt△OCE中,OC2=OE2+CE2,
∴x2=32+(x﹣1)2,
解得:x=1,
∴⊙O的半径为1,
故答案为1.
【点睛】
本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.
16、-1
【解析】
∵关于x,y的二元一次方程组 的解互为相反数,
∴x=-y③,
把③代入②得:-y+2y=-1,
解得y=-1,所以x=1,
把x=1,y=-1代入①得2-3=k,
即k=-1.
故答案为-1
17、2
【解析】
分析:根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解.
详解:根据三角形的三边关系,得
第三边>4,而<1.
又第三条边长为整数,
则第三边是2.
点睛:此题主要是考查了三角形的三边关系,同时注意整数这一条件.
18、(16,) (8068,)
【解析】
利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可.
【详解】
∵点A(﹣4,0),B(0,3),
∴OA=4,OB=3,
∴AB==5,
∴第(2)个三角形的直角顶点的坐标是(4,);
∵5÷3=1余2,
∴第(5)个三角形的直角顶点的坐标是(16,),
∵2018÷3=672余2,
∴第(2018)个三角形是第672组的第二个直角三角形,
其直角顶点与第672组的第二个直角三角形顶点重合,
∴第(2018)个三角形的直角顶点的坐标是(8068,).
故答案为:(16,);(8068,)
【点睛】
本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、2.
【解析】
根据勾股定理逆定理,证△ABD是直角三角形,得AD⊥BC,可证AD垂直平分BC,所以AB=AC.
【详解】
解:∵AD是△ABC的中线,且BC=10,
∴BD=BC=1.
∵12+122=22,即BD2+AD2=AB2,
∴△ABD是直角三角形,则AD⊥BC,
又∵CD=BD,
∴AC=AB=2.
【点睛】
本题考核知识点:勾股定理、全等三角形、垂直平分线.解题关键点:熟记相关性质,证线段相等.
20、(1)y=100x+17360;(2)3种方案:A型车21辆,B型车41辆最省钱.
【解析】
(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;
(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题.
【详解】
(1)由题意:y=380x+280(62-x)=100x+17360,
∵30x+20(62-x)≥1441,
∴x≥20.1,
又∵x为整数,
∴x的取值范围为21≤x≤62的整数;
(2)由题意100x+17360≤19720,
∴x≤23.6,
∴21≤x≤23,
∴共有3种租车方案,
x=21时,y有最小值=1.
即租租A型车21辆,B型车41辆最省钱.
【点睛】
本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.
21、详见解析.
【解析】
先证明△ADF≌△CDE,由此可得∠DAF=∠DCE,∠AFD=∠CED,再根据∠EAG=∠FCG,AE=CF,∠AEG=∠CFG可得△AEG≌△CFG,所以AG=CG.
【详解】
证明:∵四边形ABCD是正方形,
∴AD=DC,
∵E、F分别是AB、BC边的中点,
∴AE=ED=CF=DF.
又∠D=∠D,
∴△ADF≌△CDE(SAS).
∴∠DAF=∠DCE,∠AFD=∠CED.
∴∠AEG=∠CFG.
在△AEG和△CFG中
,
∴△AEG≌△CFG(ASA).
∴AG=CG.
【点睛】
本题主要考查正方形的性质、全等三角形的判定和性质,关键是要灵活运用全等三角形的判定方法.
22、,1
【解析】
先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可.
【详解】
解:原式=[﹣]
=
=,
∵不等式组的解为<a<5,其整数解是2,3,4,
a不能等于0,2,4,
∴a=3,
当a=3时,原式==1.
【点睛】
本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.
23、(1),(2)AC⊥CD(3)∠BMC=41°
【解析】
分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得C、D点坐标,再利用待定系数法可求得直线AC的解析式;
(2)由条件可证明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC⊥CD;(3)连接AD,可证得四边形AEBD为平行四边形,可得出△ACD为等腰直角三角形,则可求得答案.
本题解析:
(1)∵A(1,0),∴OA=1.∵tan∠OAC=,∴,解得OC=2,
∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x轴,∴D(﹣2,3),
∴m=﹣2×3=﹣6,∴y=﹣,
设直线AC关系式为y=kx+b,∵过A(1,0),C(0,﹣2),
∴,解得,∴y=x﹣2;
(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,
在△OAC和△BCD中
,∴△OAC≌△BCD(SAS),∴AC=CD,
∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,
∴AC⊥CD;
(3)∠BMC=41°.
如图,连接AD,
∵AE=OC,BD=OC,AE=BD,∴BD∥x轴,
∴四边形AEBD为平行四边形,
∴AD∥BM,∴∠BMC=∠DAC,
∵△OAC≌△BCD,∴AC=CD,
∵AC⊥CD,∴△ACD为等腰直角三角形,
∴∠BMC=∠DAC=41°.
24、证明见解析
【解析】
解:∵,∴.∴.
∴是一元二次方程的根.
∴,∴.
25、(1),;(1)2.
【解析】
试题分析:(1)先求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;
(1)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解.
试题解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x轴于点E,tan∠ABO==,∴OA=1,CE=3,∴点A的坐标为(0,1)、点B的坐标为C(4,0)、点C的坐标为(﹣1,3),设直线AB的解析式为,则,解得:,故直线AB的解析式为,设反比例函数的解析式为(),将点C的坐标代入,得3=,∴m=﹣3.∴该反比例函数的解析式为;
(1)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(3,﹣1),则△BOD的面积=4×1÷1=1,△BOD的面积=4×3÷1=3,故△OCD的面积为1+3=2.
考点:反比例函数与一次函数的交点问题.
26、300米
【解析】
解:设原来每天加固x米,根据题意,得
.
去分母,得 1200+4200=18x(或18x=5400)
解得.
检验:当时,(或分母不等于0).
∴是原方程的解.
答:该地驻军原来每天加固300米.
27、此时轮船所在的B处与灯塔P的距离是98海里.
【解析】
【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.
【详解】作PC⊥AB于C点,
∴∠APC=30°,∠BPC=45° ,AP=80(海里),
在Rt△APC中,cos∠APC=,
∴PC=PA•cos∠APC=40(海里),
在Rt△PCB中,cos∠BPC=,
∴PB==40≈98(海里),
答:此时轮船所在的B处与灯塔P的距离是98海里.
【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.
广州市花都区2023届中考数学模拟精编试卷含解析: 这是一份广州市花都区2023届中考数学模拟精编试卷含解析,共12页。
广东省广州各区达标名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份广东省广州各区达标名校2021-2022学年中考数学模拟精编试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列命题是真命题的是等内容,欢迎下载使用。
2021-2022学年广东省深圳中学中考数学模拟精编试卷含解析: 这是一份2021-2022学年广东省深圳中学中考数学模拟精编试卷含解析,共22页。试卷主要包含了下列运算正确的是,计算3的结果是,的倒数是等内容,欢迎下载使用。