广东普宁市下架山中学2021-2022学年中考数学对点突破模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列计算结果是x5的为( )
A.x10÷x2 B.x6﹣x C.x2•x3 D.(x3)2
2.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )
A. B. C. D.
3.如图,直线与y轴交于点(0,3)、与x轴交于点(a,0),当a满足时,k的取值范围是( )
A. B. C. D.
4.如图,正六边形ABCDEF内接于,M为EF的中点,连接DM,若的半径为2,则MD的长度为
A. B. C.2 D.1
5.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则( )
A.a≠±1 B.a=1 C.a=﹣1 D.a=±1
6.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:
x
﹣2
﹣1
0
1
2
y
8
3
0
﹣1
0
则抛物线的顶点坐标是( )
A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)
7.数据3、6、7、1、7、2、9的中位数和众数分别是( )
A.1和7 B.1和9 C.6和7 D.6和9
8.的倒数是( )
A. B.3 C. D.
9.实数在数轴上的点的位置如图所示,则下列不等关系正确的是( )
A.a+b>0 B.a-b<0 C.<0 D.>
10.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有( )
A.2个 B.3个 C.4个 D.5个
11.一次函数满足,且随的增大而减小,则此函数的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
12.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算(+)(-)的结果等于________.
14.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为_____.
15.如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是_____.
16.如图所示,点C在反比例函数的图象上,过点C的直线与x轴、y轴分别交于点A、B,且,已知的面积为1,则k的值为______.
17.如图,Rt△ABC 中,∠C=90° , AB=10,,则AC的长为_______ .
18.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标(6,0),B的坐标(0,8),点C的坐标(﹣2,4),点M,N分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个单位长度的速度沿O→A→B路线向终点B匀速运动,动点N从O点开始,以每秒2个单位长度的速度沿O→C→B→A路线向终点A匀速运动,点M,N同时从O点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间为t秒(t>0),△OMN的面积为S.则:AB的长是_____,BC的长是_____,当t=3时,S的值是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.求双曲线的解析式;求点C的坐标,并直接写出y1<y2时x的取值范围.
20.(6分)下面是一位同学的一道作图题:
已知线段a、b、c(如图),求作线段x,使
他的作法如下:
(1)以点O为端点画射线,.
(2)在上依次截取,.
(3)在上截取.
(4)联结,过点B作,交于点D.
所以:线段________就是所求的线段x.
①试将结论补完整
②这位同学作图的依据是________
③如果,,,试用向量表示向量.
21.(6分)如图,△ABC与△A1B1C1是位似图形.
(1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B的坐标为____________;
(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;
(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP的周长为_______.
22.(8分)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣4,0),B (1,0)两点,与y轴交于点C.
(1)求这个二次函数的解析式;
(2)连接AC、BC,判断△ABC的形状,并证明;
(3)若点P为二次函数对称轴上点,求出使△PBC周长最小时,点P的坐标.
23.(8分)如图,AB∥CD,∠1=∠2,求证:AM∥CN
24.(10分)如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).求二次函数的解析式;求函数图象的顶点坐标及D点的坐标;二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.
25.(10分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点.下图中的P,Q两点即为同族点.
(1)已知点A的坐标为(﹣3,1),①在点R(0,4),S(2,2),T(2,﹣3)中,为点A的同族点的是 ;②若点B在x轴上,且A,B两点为同族点,则点B的坐标为 ;
(2)直线l:y=x﹣3,与x轴交于点C,与y轴交于点D,
①M为线段CD上一点,若在直线x=n上存在点N,使得M,N两点为同族点,求n的取值范围;
②M为直线l上的一个动点,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,直接写出m的取值范围.
26.(12分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.
(1)求证:AB是⊙O的切线;
(2)若AC=8,tan∠BAC=,求⊙O的半径.
27.(12分)解方程:
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】解:A.x10÷x2=x8,不符合题意;
B.x6﹣x不能进一步计算,不符合题意;
C.x2x3=x5,符合题意;
D.(x3)2=x6,不符合题意.
故选C.
2、A
【解析】
根据左视图的概念得出各选项几何体的左视图即可判断.
【详解】
解:A选项几何体的左视图为
;
B选项几何体的左视图为
;
C选项几何体的左视图为
;
D选项几何体的左视图为
;
故选:A.
【点睛】
本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念.
3、C
【解析】
解:把点(0,2)(a,0)代入,得b=2.则a=,
∵,
∴,
解得:k≥2.
故选C.
【点睛】
本题考查一次函数与一元一次不等式,属于综合题,难度不大.
4、A
【解析】
连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.
【详解】
连接OM、OD、OF,
∵正六边形ABCDEF内接于⊙O,M为EF的中点,
∴OM⊥OD,OM⊥EF,∠MFO=60°,
∴∠MOD=∠OMF=90°,
∴OM=OF•sin∠MFO=2×=,
∴MD=,
故选A.
【点睛】
本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.
5、C
【解析】
根据一元一次方程的定义即可求出答案.
【详解】
由题意可知:,解得a=−1
故选C.
【点睛】
本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型.
6、C
【解析】
分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标.
详解:当或时,,当时,,
,解得 ,
二次函数解析式为,
抛物线的顶点坐标为,
故选C.
点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键.
7、C
【解析】
如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数. 一组数据中出现次数最多的数据叫做众数.
【详解】
解:∵7出现了2次,出现的次数最多,
∴众数是7;
∵从小到大排列后是:1,2,3,6,7,7,9,排在中间的数是6,
∴中位数是6
故选C.
【点睛】
本题考查了中位数和众数的求法,解答本题的关键是熟练掌握中位数和众数的定义.
8、A
【解析】
解:的倒数是.
故选A.
【点睛】
本题考查倒数,掌握概念正确计算是解题关键.
9、C
【解析】
根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案.
【详解】
解:由数轴,得b<-1,0<a<1.
A、a+b<0,故A错误;
B、a-b>0,故B错误;
C、<0,故C符合题意;
D、a2<1<b2,故D错误;
故选C.
【点睛】
本题考查了实数与数轴,利用点在数轴上的位置得出b<-1,0<a<1是解题关键,又利用了有理数的运算.
10、C
【解析】
分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.
【详解】
如图,
分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.
∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.
故选C.
【点睛】
本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.
11、A
【解析】
试题分析:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.
故选A.
考点:一次函数图象与系数的关系.
12、D
【解析】试题分析:俯视图是从上面看到的图形.
从上面看,左边和中间都是2个正方形,右上角是1个正方形,
故选D.
考点:简单组合体的三视图
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、2
【解析】
利用平方差公式进行计算即可得.
【详解】
原式=
=5-3=2,
故答案为:2.
【点睛】
本题考查了二次根式的混合运算,掌握平方差公式结构特征是解本题的关键.
14、﹣2
【解析】
要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到:=1,然后用待定系数法即可.
【详解】
过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.
设点A的坐标是(m,n),则AC=n,OC=m.
∵∠AOB=90°,
∴∠AOC+∠BOD=90°.
∵∠DBO+∠BOD=90°,
∴∠DBO=∠AOC.
∵∠BDO=∠ACO=90°,
∴△BDO∽△OCA.
∴,
∵OB=1OA,
∴BD=1m,OD=1n.
因为点A在反比例函数y=的图象上,
∴mn=1.
∵点B在反比例函数y=的图象上,
∴B点的坐标是(-1n,1m).
∴k=-1n•1m=-4mn=-2.
故答案为-2.
【点睛】
本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,利用相似三角形的性质求得点B的坐标(用含n的式子表示)是解题的关键.
15、
【解析】
【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.
【详解】∵AB=AC,∠A=36°,
∴∠B=∠ACB==72°,
∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,
∴AE=CE,∠A=∠ECA=36°,
∴∠CEB=72°,
∴BC=CE=AE=,
故答案为.
【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.
16、1
【解析】
根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据的面积为1,即可求得k的值.
【详解】
解:设点A的坐标为,
过点C的直线与x轴,y轴分别交于点A,B,且,的面积为1,
点,
点B的坐标为,
,
解得,,
故答案为:1.
【点睛】
本题考查了反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
17、8
【解析】
在Rt△ABC中,cosB=,AB=10,可求得BC,再利用勾股定理即可求AC的长.
【详解】
∵Rt△ABC中,∠C=90°,AB=10
∴cosB=,得BC=6
由勾股定理得BC=
故答案为8.
【点睛】
此题主要考查锐角三角函数在直角三形中的应用及勾股定理.
18、10, 1, 1
【解析】
作CD⊥x轴于D,CE⊥OB于E,由勾股定理得出AB=10,OC==1,求出BE=OB﹣OE=4,得出OE=BE,由线段垂直平分线的性质得出BC=OC=1;当t=3时,N到达C点,M到达OA的中点,OM=3,ON=OC=1,由三角形面积公式即可得出△OMN的面积.
【详解】
解:作CD⊥x轴于D,CE⊥OB于E,如图所示:
由题意得:OA=1,OB=8,
∵∠AOB=90°,
∴AB==10;
∵点C的坐标(﹣2,4),
∴OC==1,OE=4,
∴BE=OB﹣OE=4,
∴OE=BE,
∴BC=OC=1;当t=3时,N到达C点,M到达OA的中点,OM=3,ON=OC=1,
∴△OMN的面积S=×3×4=1;
故答案为:10,1,1.
【点睛】
本题考查了勾股定理、坐标与图形性质、线段垂直平分线的性质、三角形面积公式等知识;熟练掌握勾股定理是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.
【解析】
【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;
(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.
【详解】(1)∵点A在直线y1=1x﹣1上,
∴设A(x,1x﹣1),
过A作AC⊥OB于C,
∵AB⊥OA,且OA=AB,
∴OC=BC,
∴AC=OB=OC,
∴x=1x﹣1,
x=1,
∴A(1,1),
∴k=1×1=4,
∴;
(1)∵,解得:,,
∴C(﹣1,﹣4),
由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.
【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.
20、①CD;②平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;③.
【解析】
①根据作图依据平行线分线段成比例定理求解可得;②根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;③先证得,即,从而知.
【详解】
①∵,
∴OA:AB=OC:CD,
∵,,,,
∴线段就是所求的线段x,
故答案为:
②这位同学作图的依据是:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;
故答案为:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;
③∵、,且,
∴,
∴,即,
∴,
∴.
【点睛】
本题主要考查作图﹣复杂作图,解题的关键是熟练掌握平行线分线段成比例定理、相似三角形的判定及向量的计算.
21、(1)作图见解析;点B的坐标为:(﹣2,﹣5);(2)作图见解析;(3)
【解析】
分析:(1)直接利用已知点位置得出B点坐标即可;
(2)直接利用位似图形的性质得出对应点位置进而得出答案;
(3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.
详解:(1)如图所示:点B的坐标为:(﹣2,﹣5);
故答案为(﹣2,﹣5);
(2)如图所示:△AB2C2,即为所求;
(3)如图所示:P点即为所求,P点坐标为:(﹣2,1),四边形ABCP的周长为:+++=4+2+2+2=6+4.
故答案为6+4.
点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键.
22、(1)抛物线解析式为y=﹣x2﹣x+2;(2)△ABC为直角三角形,理由见解析;(3)当P点坐标为(﹣,)时,△PBC周长最小
【解析】
(1)设交点式y=a(x+4)(x-1),展开得到-4a=2,然后求出a即可得到抛物线解析式;
(2)先利用两点间的距离公式计算出AC2=42+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判断△ABC为直角三角形;
(3)抛物线的对称轴为直线x=-,连接AC交直线x=-于P点,如图,利用两点之间线段最短得到PB+PC的值最小,则△PBC周长最小,接着利用待定系数法求出直线AC的解析式为y=x+2,然后进行自变量为-所对应的函数值即可得到P点坐标.
【详解】
(1)抛物线的解析式为y=a(x+4)(x﹣1),
即y=ax2+3ax﹣4a,
∴﹣4a=2,解得a=﹣,
∴抛物线解析式为y=﹣x2﹣x+2;
(2)△ABC为直角三角形.理由如下:
当x=0时,y=﹣x2﹣x+2=2,则C(0,2),
∵A(﹣4,0),B (1,0),
∴AC2=42+22,BC2=12+22,AB2=52=25,
∴AC2+BC2=AB2,
∴△ABC为直角三角形,∠ACB=90°;
(3)
抛物线的对称轴为直线x=﹣,
连接AC交直线x=﹣于P点,如图,
∵PA=PB,
∴PB+PC=PA+PC=AC,
∴此时PB+PC的值最小,△PBC周长最小,
设直线AC的解析式为y=kx+m,
把A(﹣4,0),C(0,2)代入得,解得,
∴直线AC的解析式为y=x+2,
当x=﹣时,y=x+2=,则P(﹣,)
∴当P点坐标为(﹣,)时,△PBC周长最小.
【点睛】
本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解.关于x的一元二次方程即可求得交点横坐标.也考查了待定系数法求二次函数解析式和最短路径问题.
23、详见解析.
【解析】
只要证明∠EAM=∠ECN,根据同位角相等两直线平行即可证明.
【详解】
证明:∵AB∥CD,
∴∠EAB=∠ECD,
∵∠1=∠2,
∴∠EAM=∠ECN,
∴AM∥CN.
【点睛】
本题考查平行线的判定和性质,解题的关键是熟练掌握平行线的性质和判定,属于中考基础题.
24、(1)y=x1﹣4x+6;(1)D点的坐标为(6,0);(3)存在.当点C的坐标为(4,1)时,△CBD的周长最小
【解析】
(1)只需运用待定系数法就可求出二次函数的解析式;
(1)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D的坐标;
(3)连接CA,由于BD是定值,使得△CBD的周长最小,只需CD+CB最小,根据抛物线是轴对称图形可得CA=CD,只需CA+CB最小,根据“两点之间,线段最短”可得:当点A、C、B三点共线时,CA+CB最小,只需用待定系数法求出直线AB的解析式,就可得到点C的坐标.
【详解】
(1)把A(1,0),B(8,6)代入,得
解得:
∴二次函数的解析式为;
(1)由,得
二次函数图象的顶点坐标为(4,﹣1).
令y=0,得,
解得:x1=1,x1=6,
∴D点的坐标为(6,0);
(3)二次函数的对称轴上存在一点C,使得的周长最小.
连接CA,如图,
∵点C在二次函数的对称轴x=4上,
∴xC=4,CA=CD,
∴的周长=CD+CB+BD=CA+CB+BD,
根据“两点之间,线段最短”,可得
当点A、C、B三点共线时,CA+CB最小,
此时,由于BD是定值,因此的周长最小.
设直线AB的解析式为y=mx+n,
把A(1,0)、B(8,6)代入y=mx+n,得
解得:
∴直线AB的解析式为y=x﹣1.
当x=4时,y=4﹣1=1,
∴当二次函数的对称轴上点C的坐标为(4,1)时,的周长最小.
【点睛】
本题考查了(1)二次函数综合题;(1)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两点之间线段最短.
25、(1)①R,S;②(,0)或(4,0);(2)①;②m≤或m≥1.
【解析】
(1)∵点A的坐标为(−2,1),
∴2+1=4,
点R(0,4),S(2,2),T(2,−2)中,
0+4=4,2+2=4,2+2=5,
∴点A的同族点的是R,S;
故答案为R,S;
②∵点B在x轴上,
∴点B的纵坐标为0,
设B(x,0),
则|x|=4,
∴x=±4,
∴B(−4,0)或(4,0);
故答案为(−4,0)或(4,0);
(2)①由题意,直线与x轴交于C(2,0),与y轴交于D(0,).
点M在线段CD上,设其坐标为(x,y),则有:
,,且.
点M到x轴的距离为,点M到y轴的距离为,
则.
∴点M的同族点N满足横纵坐标的绝对值之和为2.
即点N在右图中所示的正方形CDEF上.
∵点E的坐标为(,0),点N在直线上,
∴.
②如图,设P(m,0)为圆心, 为半径的圆与直线y=x−2相切,
∴PC=2,
∴OP=1,
观察图形可知,当m≥1时,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,再根据对称性可知,m≤也满足条件,
∴满足条件的m的范围:m≤或m≥1
26、 (1)见解析;(2).
【解析】
分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;
(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.
详解:(1)连结OP、OA,OP交AD于E,如图,
∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.
∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.
∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,
∴直线AB与⊙O相切;
(2)连结BD,交AC于点F,如图,
∵四边形ABCD为菱形,∴DB与AC互相垂直平分.
∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,
∴DF=2,∴AD==2,∴AE=.
在Rt△PAE中,tan∠1==,∴PE=.
设⊙O的半径为R,则OE=R﹣,OA=R.
在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,
∴R=,即⊙O的半径为.
点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理.
27、x=-4是方程的解
【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
∴x=-4,
当x=-4时,
∴x=-4是方程的解
【点睛】
本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
广东省深圳市坪山新区2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份广东省深圳市坪山新区2021-2022学年中考数学对点突破模拟试卷含解析,共18页。试卷主要包含了在中,,,下列结论中,正确的是,若=1,则符合条件的m有,点M,下列计算正确的是等内容,欢迎下载使用。
广东普宁市下架山中学2022年中考数学全真模拟试题含解析: 这是一份广东普宁市下架山中学2022年中考数学全真模拟试题含解析,共23页。试卷主要包含了化简等内容,欢迎下载使用。
2021-2022学年重庆南开中学中考数学对点突破模拟试卷含解析: 这是一份2021-2022学年重庆南开中学中考数学对点突破模拟试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,如图,在平面直角坐标系中,A,下列说法中,正确的是等内容,欢迎下载使用。