|试卷下载
终身会员
搜索
    上传资料 赚现金
    福建省邵武市四中学片区达标名校2022年中考数学仿真试卷含解析
    立即下载
    加入资料篮
    福建省邵武市四中学片区达标名校2022年中考数学仿真试卷含解析01
    福建省邵武市四中学片区达标名校2022年中考数学仿真试卷含解析02
    福建省邵武市四中学片区达标名校2022年中考数学仿真试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省邵武市四中学片区达标名校2022年中考数学仿真试卷含解析

    展开
    这是一份福建省邵武市四中学片区达标名校2022年中考数学仿真试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,下列哪一个是假命题等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车辆,根据题意,可列出的方程是 ( ).
    A. B.
    C. D.
    2.在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是(  )
    A.平均数为160 B.中位数为158 C.众数为158 D.方差为20.3
    3.在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是(  )

    A.a<0,b<0,c>0
    B.﹣=1
    C.a+b+c<0
    D.关于x的方程ax2+bx+c=﹣1有两个不相等的实数根
    4.如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为( )

    A. B. C. D.1
    5.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是( )

    A. B.2 C. D.
    6.下列计算正确的是(  )
    A.a2•a3=a5 B.2a+a2=3a3 C.(﹣a3)3=a6 D.a2÷a=2
    7.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是(  )
    A. B. C. D.
    8.下列哪一个是假命题(  )
    A.五边形外角和为360°
    B.切线垂直于经过切点的半径
    C.(3,﹣2)关于y轴的对称点为(﹣3,2)
    D.抛物线y=x2﹣4x+2017对称轴为直线x=2
    9.如图,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,则∠EDC等于(  )

    A.10° B.12.5° C.15° D.20°
    10.如图,矩形中,,,以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点,则的长为( )

    A.3 B.4 C. D.5
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.
    12.函数中自变量的取值范围是______________
    13.如图,AB=AC,AD∥BC,若∠BAC=80°,则∠DAC=__________.

    14.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是_______.
    15.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则依题意列方程为_________.

    16.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:

    则,y2=_____,第n次的运算结果yn=_____.(用含字母x和n的代数式表示).
    三、解答题(共8题,共72分)
    17.(8分)△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.
    如图1,求证:OE=AD;如图2,连接CE,求证:∠OCE=∠ABD;如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=,OD=3,求线段CE的长.
    18.(8分)如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.如图1,求C点坐标;如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.

    19.(8分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:

    每台甲型收割机的租金
    每台乙型收割机的租金
    A地区
    1800
    1600
    B地区
    1600
    1200
    (1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;
    (2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;
    (3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.
    20.(8分)(1)|﹣2|+•tan30°+(2018﹣π)0-()-1
    (2)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.
    21.(8分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.
    (1)求证:直线CE是⊙O的切线.
    (2)若BC=3,CD=3,求弦AD的长.

    22.(10分)已知,关于x的方程x2+2x-k=0有两个不相等的实数根.
    (1)求k的取值范围;
    (2)若x1,x2是这个方程的两个实数根,求的值;
    (3)根据(2)的结果你能得出什么结论?
    23.(12分)由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;
    售价(元/台)
    月销售量(台)
    400
    200

    250
    x

    (2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?
    24.随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

    (1)这次统计共抽查了_____名学生,最喜欢用电话沟通的所对应扇形的圆心角是____°;
    (2)将条形统计图补充完整;
    (3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?
    (4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.
    【详解】
    根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.
    故选B.
    【点睛】
    此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.
    2、D
    【解析】
    解:A.平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;
    B.按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;
    C.数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;
    D.这组数据的方差是S2=[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.
    故选D.
    点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大.
    3、D
    【解析】
    试题分析:根据图像可得:a<0,b>0,c<0,则A错误;,则B错误;当x=1时,y=0,即a+b+c=0,则C错误;当y=-1时有两个交点,即有两个不相等的实数根,则正确,故选D.
    4、D
    【解析】
    试题分析:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC=∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC•tan∠PBC==1,∴点P到边AB所在直线的距离为1,故选D.
    考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.
    5、A
    【解析】
    分析:连接AC,根据勾股定理求出AC、BC、AB的长,根据勾股定理的逆定理得到△ABC是直角三角形,根据正切的定义计算即可.
    详解:
    连接AC,

    由网格特点和勾股定理可知,
    AC=,
    AC2+AB2=10,BC2=10,
    ∴AC2+AB2=BC2,
    ∴△ABC是直角三角形,
    ∴tan∠ABC=.
    点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.
    6、A
    【解析】
    直接利用合并同类项法则以及积的乘方运算法则、整式的除法运算法则分别计算得出答案.
    【详解】
    A、a2•a3=a5,故此选项正确;
    B、2a+a2,无法计算,故此选项错误;
    C、(-a3)3=-a9,故此选项错误;
    D、a2÷a=a,故此选项错误;
    故选A.
    【点睛】
    此题主要考查了合并同类项以及积的乘方运算、整式的除法运算,正确掌握相关运算法则是解题关键.
    7、C
    【解析】
    试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.
    8、C
    【解析】
    分析:
    根据每个选项所涉及的数学知识进行分析判断即可.
    详解:
    A选项中,“五边形的外角和为360°”是真命题,故不能选A;
    B选项中,“切线垂直于经过切点的半径”是真命题,故不能选B;
    C选项中,因为点(3,-2)关于y轴的对称点的坐标是(-3,-2),所以该选项中的命题是假命题,所以可以选C;
    D选项中,“抛物线y=x2﹣4x+2017对称轴为直线x=2”是真命题,所以不能选D.
    故选C.
    点睛:熟记:(1)凸多边形的外角和都是360°;(2)切线的性质;(3)点P(a,b)关于y轴的对称点为(-a,b);(4)抛物线的对称轴是直线: 等数学知识,是正确解答本题的关键.
    9、C
    【解析】
    试题分析:根据三角形的三线合一可求得∠DAC及∠ADE的度数,根据∠EDC=90°-∠ADE即可得到答案.
    ∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,
    ∴∠DAC=∠BAD=30°,
    ∵AD=AE(已知),
    ∴∠ADE=75°
    ∴∠EDC=90°-∠ADE=15°.
    故选C.
    考点:本题主要考查了等腰三角形的性质,三角形内角和定理
    点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
    10、B
    【解析】
    连接DF,在中,利用勾股定理求出CF的长度,则EF的长度可求.
    【详解】
    连接DF,

    ∵四边形ABCD是矩形

    在中,



    故选:B.
    【点睛】
    本题主要考查勾股定理,掌握勾股定理的内容是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    根据题意得x1+x2=2,x1x2=﹣1,
    所以x1+x2﹣x1x2=2﹣(﹣1)=1.
    故答案为1.
    12、x≤2且x≠1
    【解析】
    解:根据题意得:
    且x−1≠0,
    解得:且
    故答案为且
    13、50°
    【解析】
    根据等腰三角形顶角度数,可求出每个底角,然后根据两直线平行,内错角相等解答.
    【详解】
    解:∵AB=AC,∠BAC=80°,
    ∴∠B=∠C=(180°﹣80°)÷2=50°;
    ∵AD∥BC,
    ∴∠DAC=∠C=50°,
    故答案为50°.
    【点睛】
    本题考查了等腰三角形的性质以及平行线性质的应用,注意:两直线平行,内错角相等.
    14、1或1
    【解析】
    由两圆相切,它们的圆心距为3,其中一个圆的半径为4,即可知这两圆内切,然后分别从若大圆的半径为4与若小圆的半径为4去分析,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得另一个圆的半径.
    【详解】
    ∵两圆相切,它们的圆心距为3,其中一个圆的半径为4,
    ∴这两圆内切,
    ∴若大圆的半径为4,则另一个圆的半径为:4-3=1,
    若小圆的半径为4,则另一个圆的半径为:4+3=1.
    故答案为:1或1
    【点睛】
    此题考查了圆与圆的位置关系.此题难度不大,解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系,注意分类讨论思想的应用.
    15、x+x=75.
    【解析】
    试题解析:设长方形墙砖的长为x厘米,
    可得:x+x=75.
    16、
    【解析】
    根据题目中的程序可以分别计算出y2和yn,从而可以解答本题.
    【详解】
    ∵y1=,∴y2===,y3=,……
    yn=.
    故答案为:.
    【点睛】
    本题考查了分式的混合运算,解答本题的关键是明确题意,用代数式表示出相应的y2和yn.

    三、解答题(共8题,共72分)
    17、 (1)证明见解析;(2)证明见解析;(3)CE=.
    【解析】
    (1)连接OB,证明△ABD≌△OBE,即可证出OE=AD.
    (2)连接OB,证明△OCE≌△OBE,则∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,则∠OCE=∠ABD.
    (3)过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,则△ADB≌△MQD,四边形MQOG为平行四边形,∠DMF=∠EDN,再结合特殊角度和已知的线段长度求出CE的长度即可.
    【详解】
    解:(1)如图1所示,连接OB,

    ∵∠A=60°,OA=OB,
    ∴△AOB为等边三角形,
    ∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,
    ∵△DBE为等边三角形,
    ∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,
    ∴∠ABD=∠OBE,
    ∴△ADB≌△OBE(SAS),
    ∴OE=AD;
    (2)如图2所示,

    由(1)可知△ADB≌△OBE,
    ∴∠BOE=∠A=60°,∠ABD=∠OBE,
    ∵∠BOA=60°,
    ∴∠EOC=∠BOE =60°,
    又∵OB=OC,OE=OE,
    ∴△BOE≌△COE(SAS),
    ∴∠OCE=∠OBE,
    ∴∠OCE=∠ABD;
    (3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,

    ∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,
    ∴△ADB≌△MQD(ASA),
    ∴AB=MQ,
    ∵∠A=60°,∠ABC=90°,
    ∴∠ACB=30°,
    ∴AB==AO=CO=OG,
    ∴MQ=OG,
    ∵AB∥GO,
    ∴MQ∥GO,
    ∴四边形MQOG为平行四边形,
    设AD为x,则OE=x,OF=2x,
    ∵OD=3,
    ∴OA=OG=3+x,GF=3﹣x,
    ∵DQ=AD=x,
    ∴OQ=MG=3﹣x,
    ∴MG=GF,
    ∵∠DOG=60°,
    ∴∠MGF=120°,
    ∴∠GMF=∠GFM=30°,
    ∵∠QMD=∠ABD=∠ODE,∠ODN=30°,
    ∴∠DMF=∠EDN,
    ∵OD=3,
    ∴ON=,DN=,
    ∵tan∠BMF=,
    ∴tan∠NDE=,
    ∴ ,
    解得x=1,
    ∴NE=,
    ∴DE=,
    ∴CE=.
    故答案为(1)证明见解析;(2)证明见解析;(3)CE=.
    【点睛】
    本题考查圆的相关性质以及与圆有关的计算,全等三角形的性质和判定,第三问构造全等三角形找到与∠BMF相等的角为解题的关键.
    18、(1)C(1,-4).(2)证明见解析;(3)∠APB=135°,P(1,0).
    【解析】
    (1)作CH⊥y轴于H,证明△ABO≌△BCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;
    (2)证明△PBA≌△QBC,根据全等三角形的性质得到PA=CQ;
    (3)根据C、P,Q三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP,得到P点坐标.
    【详解】
    (1)作CH⊥y轴于H,

    则∠BCH+∠CBH=90°,
    ∵AB⊥BC,
    ∴∠ABO+∠CBH=90°,
    ∴∠ABO=∠BCH,
    在△ABO和△BCH中,

    ∴△ABO≌△BCH,
    ∴BH=OA=3,CH=OB=1,
    ∴OH=OB+BH=4,
    ∴C点坐标为(1,﹣4);
    (2)∵∠PBQ=∠ABC=90°,
    ∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,
    在△PBA和△QBC中,

    ∴△PBA≌△QBC,
    ∴PA=CQ;
    (3)∵△BPQ是等腰直角三角形,
    ∴∠BQP=45°,
    当C、P,Q三点共线时,∠BQC=135°,
    由(2)可知,△PBA≌△QBC,
    ∴∠BPA=∠BQC=135°,
    ∴∠OPB=45°,
    ∴OP=OB=1,
    ∴P点坐标为(1,0).
    【点睛】
    本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    19、(1)y=200x+74000(10≤x≤30)
    (2)有三种分配方案,
    方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;
    方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;
    方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;
    (3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.
    【解析】
    (1)根据题意和表格中的数据可以得到y关于x的函数关系式;
    (2)根据题意可以得到相应的不等式,从而可以解答本题;
    (3)根据(1)中的函数解析式和一次函数的性质可以解答本题.
    【详解】
    解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,
    ∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);
    (2)由题意可得,
    200x+74000≥79600,得x≥28,
    ∴28≤x≤30,x为整数,
    ∴x=28、29、30,
    ∴有三种分配方案,
    方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;
    方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;
    方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;
    (3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,
    理由:∵y=200x+74000中y随x的增大而增大,
    ∴当x=30时,y取得最大值,此时y=80000,
    ∴派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.
    【点睛】
    本题考查一次函数的性质,解题关键是明确题意,找出所求问题需要的条件,利用一次函数和不等式的性质解答.
    20、(1)-1(1)-1
    【解析】
    (1)先根据根据绝对值的意义、立方根的意义、特殊角的三角函数值、零指数幂、负整数指数幂的意义化简,然后按照实数的运算法则计算即可;
    (1)把括号里通分,把的分子、分母分解因式约分,然后把除法转化为乘法计算;然后求出不等式组的整数解,选一个使分式有意义的值代入计算即可.
    【详解】
    (1)原式=1+3×+1﹣5
    =1++1﹣5
    =﹣1;
    (1)原式=
    =
    =
    =﹣,
    解不等式组得:-1≤x
    则不等式组的整数解为﹣1、0、1、1,
    ∵x(x+1)≠0且x﹣1≠0,
    ∴x≠0且x≠±1,
    ∴x=1,
    则原式=﹣=﹣1.
    【点睛】
    本题考查了实数的运算,分式的化简求值,不等式组的解法.熟练掌握各知识点是解答本题的关键,本题的易错点是容易忽视分式有意义的条件.
    21、(1)证明见解析(2)
    【解析】
    (1)连结OC,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;
    (2)由△CDB∽△CAD,可得,推出CD2=CB•CA,可得(3)2=3CA,推出CA=6,推出AB=CA﹣BC=3,,设BD=k,AD=2k,在Rt△ADB中,可得2k2+4k2=5,求出k即可解决问题.
    【详解】
    (1)证明:连结OC,如图,

    ∵AD平分∠EAC,
    ∴∠1=∠3,
    ∵OA=OD,
    ∴∠1=∠2,
    ∴∠3=∠2,
    ∴OD∥AE,
    ∵AE⊥DC,
    ∴OD⊥CE,
    ∴CE是⊙O的切线;
    (2)∵∠CDO=∠ADB=90°,
    ∴∠2=∠CDB=∠1,∵∠C=∠C,
    ∴△CDB∽△CAD,
    ∴,
    ∴CD2=CB•CA,
    ∴(3)2=3CA,
    ∴CA=6,
    ∴AB=CA﹣BC=3,,设BD=k,AD=2k,
    在Rt△ADB中,2k2+4k2=5,
    ∴k=,
    ∴AD=.
    22、(1)k>-1;(2)2;(3)k>-1时,的值与k无关.
    【解析】
    (1)由题意得该方程的根的判别式大于零,列出不等式解答即可.
    (2)将要求的代数式通分相加转化为含有两根之和与两根之积的形式,再根据根与系数的关系代数求值即可.
    (3)结合(1)和(2)结论可见,k>-1时,的值为定值2,与k无关.
    【详解】
    (1)∵方程有两个不等实根,
    ∴△>0,
    即4+4k>0,∴k>-1
    (2)由根与系数关系可知
    x1+x2=-2 ,x1x2=-k,



    (3)由(1)可知,k>-1时,
    的值与k无关.
    【点睛】
    本题考查了一元二次方程的根的判别式,根与系数的关系等知识,熟练掌握相关知识点是解答关键.
    23、 (1)390,1-5x,y=-5x+1(300≤x≤2);(2)售价定位320元时,利润最大,为3元.
    【解析】
    (1)根据题中条件可得390,1-5x,若销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.
    (2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w.
    【详解】
    (1)依题意得:
    y=200+50×.
    化简得:y=-5x+1.
    (2)依题意有:
    ∵,
    解得300≤x≤2.
    (3)由(1)得:w=(-5x+1)(x-200)
    =-5x2+3200x-440000=-5(x-320)2+3.
    ∵x=320在300≤x≤2内,∴当x=320时,w最大=3.
    即售价定为320元/台时,可获得最大利润为3元.
    【点睛】
    本题考查了利润率问题的数量关系的运用,一次函数的解析式的运用,二次函数的解析式的运用,一元二次方程的解法的运用,解答时求出二次函数的解析式时关键.
    24、 (1)120,54;(2)补图见解析;(3)660名;(4).
    【解析】
    (1)用喜欢使用微信的人数除以它所占的百分比得到调查的总人数,再用360°乘以样本中电话人数所占比例;
    (2)先计算出喜欢使用短信的人数,然后补全条形统计图;
    (3)利用样本估计总体,用1200乘以样本中最喜欢用QQ进行沟通的学生所占的百分比即可;
    (4)画树状图展示所有9种等可能的结果数,再找出甲乙两名同学恰好选中同一种沟通方式的结果数,然后根据概率公式求解.
    【详解】
    解:(1)这次统计共抽查学生24÷20%=120(人),其中最喜欢用电话沟通的所对应扇形的圆心角是360°×=54°,
    故答案为120、54;
    (2)喜欢使用短信的人数为120﹣18﹣24﹣66﹣2=10(人),
    条形统计图为:

    (3)1200×=660,
    所以估计1200名学生中最喜欢用QQ进行沟通的学生有660名;
    (4)画树状图为:

    共有9种等可能的结果数,甲乙两名同学恰好选中同一种沟通方式的结果数为3,
    所以甲乙两名同学恰好选中同一种沟通方式的概率.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图和用样本估计总体.

    相关试卷

    福建省邵武市四中学片区达标名校2021-2022学年中考数学适应性模拟试题含解析: 这是一份福建省邵武市四中学片区达标名校2021-2022学年中考数学适应性模拟试题含解析,共18页。试卷主要包含了实数﹣5.22的绝对值是等内容,欢迎下载使用。

    福建省龙岩市金丰片区重点名校2022年中考数学仿真试卷含解析: 这是一份福建省龙岩市金丰片区重点名校2022年中考数学仿真试卷含解析,共17页。试卷主要包含了如图,O为原点,点A的坐标为,计算3的结果是等内容,欢迎下载使用。

    2022年福建省南平市邵武市四中学片区中考数学最后冲刺模拟试卷含解析: 这是一份2022年福建省南平市邵武市四中学片区中考数学最后冲刺模拟试卷含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map