搜索
    上传资料 赚现金
    英语朗读宝

    甘肃省白银市景泰四中学2021-2022学年中考数学模拟预测题含解析

    甘肃省白银市景泰四中学2021-2022学年中考数学模拟预测题含解析第1页
    甘肃省白银市景泰四中学2021-2022学年中考数学模拟预测题含解析第2页
    甘肃省白银市景泰四中学2021-2022学年中考数学模拟预测题含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    甘肃省白银市景泰四中学2021-2022学年中考数学模拟预测题含解析

    展开

    这是一份甘肃省白银市景泰四中学2021-2022学年中考数学模拟预测题含解析,共19页。试卷主要包含了下列计算正确的是,一组数据等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图所示,若将△ABO绕点O顺时针旋转180°后得到△A1B1O,则A点的对应点A1点的坐标是(  )

    A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)
    2.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于(  )

    A. B.2 C.4 D.3
    3.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )

    A.3.5 B.3 C.4 D.4.5
    4.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为( )
    A.1.05×105 B.0.105×10﹣4 C.1.05×10﹣5 D.105×10﹣7
    5.下列计算正确的是(  )
    A.(a)=a B.a+a=a
    C.(3a)•(2a)=6a D.3a﹣a=3
    6.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是(  )
    A.2 B.3 C.5 D.7
    7.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )
    A.方差 B.中位数 C.众数 D.平均数
    8.对于任意实数k,关于x的方程的根的情况为
    A.有两个相等的实数根 B.没有实数根
    C.有两个不相等的实数根 D.无法确定
    9.下列美丽的图案中,不是轴对称图形的是(   )
    A. B. C. D.
    10.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉(   )
    A.6.5千克 B.7.5千克 C.8.5千克 D.9.5千克
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.计算的结果是______.
    12.如图,在正六边形ABCDEF的上方作正方形AFGH,联结GC,那么的正切值为___.

    13.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为   .
    14.如图,点A在双曲线上,AB⊥x轴于B,且△AOB的面积S△AOB=2,则k=______.

    15.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45º.则图中阴影部分的面积是____________.

    16.如图,在平面直角坐标系xOy中,△DEF可以看作是△ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABC得到△DEF的过程:_____.

    三、解答题(共8题,共72分)
    17.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是  ;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是   ;△A2B2C2的面积是   平方单位.

    18.(8分)某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如图图表,请按正确数据解答下列各题:
    学生体能测试成绩各等次人数统计表
    体能等级
    调整前人数
    调整后人数
    优秀
    8
       
    良好
    16
       
    及格
    12
       
    不及格
    4
       
    合计
    40
       
    (1)填写统计表;
    (2)根据调整后数据,补全条形统计图;
    (3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.

    19.(8分)如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).求二次函数的解析式;求函数图象的顶点坐标及D点的坐标;二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.

    20.(8分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:
    车型
    目的地
    A村(元/辆)
    B村(元/辆)
    大货车
    800
    900
    小货车
    400
    600
    (1)求这15辆车中大小货车各多少辆?
    (2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
    (3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
    21.(8分)如图,以△ABC的边AB为直径的⊙O分别交BC、AC于F、G,且G是的中点,过点G作DE⊥BC,垂足为E,交BA的延长线于点D
    (1)求证:DE是的⊙O切线;
    (2)若AB=6,BG=4,求BE的长;
    (3)若AB=6,CE=1.2,请直接写出AD的长.

    22.(10分)在2018年韶关市开展的“善美韶关•情暖三江”的志愿者系列括动中,某志愿者组织筹集了部分资金,计划购买甲、乙两种书包若干个送给贫困山区的学生,已知每个甲种书包的价格比每个乙种书包的价格贵10元,用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,求甲、乙两种书包每个的价格各是多少元?
    23.(12分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.

    两红
    一红一白
    两白
    礼金券(元)
    18
    24
    18
    (1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.
    (2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.
    24.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    由题意可知, 点A与点A1关于原点成中心对称,根据图象确定点A的坐标,即可求得点A1的坐标.
    【详解】
    由题意可知, 点A与点A1关于原点成中心对称,
    ∵点A的坐标是(﹣3,2),
    ∴点A关于点O的对称点A'点的坐标是(3,﹣2).
    故选A.
    【点睛】
    本题考查了中心对称的性质及关于原点对称点的坐标的特征,熟知中心对称的性质及关于原点对称点的坐标的特征是解决问题的关键.
    2、B
    【解析】
    【分析】依据点C在双曲线y=上,AC∥y轴,BC∥x轴,可设C(a,),则B(3a,),A(a,),依据AC=BC,即可得到﹣=3a﹣a,进而得出a=1,依据C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,进而得到Rt△ABC中,AB=2.
    【详解】点C在双曲线y=上,AC∥y轴,BC∥x轴,
    设C(a,),则B(3a,),A(a,),
    ∵AC=BC,
    ∴﹣=3a﹣a,
    解得a=1,(负值已舍去)
    ∴C(1,1),B(3,1),A(1,3),
    ∴AC=BC=2,
    ∴Rt△ABC中,AB=2,
    故选B.
    【点睛】本题主要考查了反比例函数图象上点的坐标特征,注意反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
    3、B
    【解析】
    解:∵∠ACB=90°,∠ABC=60°,
    ∴∠A=10°,
    ∵BD平分∠ABC,
    ∴∠ABD=∠ABC=10°,
    ∴∠A=∠ABD,
    ∴BD=AD=6,
    ∵在Rt△BCD中,P点是BD的中点,
    ∴CP=BD=1.
    故选B.
    4、C
    【解析】
    试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.0000105=1.05×10﹣5,故选C.
    考点:科学记数法.
    5、A
    【解析】
    根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.
    【详解】
    A.(a2)3=a2×3=a6,故本选项正确;
    B.a2+a2=2a2,故本选项错误;
    C.(3a)•(2a)2=(3a)•(4a2)=12a1+2=12a3,故本选项错误;
    D.3a﹣a=2a,故本选项错误.
    故选A.
    【点睛】
    本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.
    6、C
    【解析】
    分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据.根据定义即可求出答案.
    详解:∵众数为5, ∴x=5, ∴这组数据为:2,3,3,5,5,5,7, ∴中位数为5, 故选C.
    点睛:本题主要考查的是众数和中位数的定义,属于基础题型.理解他们的定义是解题的关键.
    7、A
    【解析】
    试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.
    故选A.
    考点:1、计算器-平均数,2、中位数,3、众数,4、方差
    8、C
    【解析】
    判断一元二次方程的根的情况,只要看根的判别式的值的符号即可:
    ∵a=1,b=,c=,
    ∴.
    ∴此方程有两个不相等的实数根.故选C.
    9、A
    【解析】
    根据轴对称图形的概念对各选项分析判断即可得解.
    【详解】
    解:A、不是轴对称图形,故本选项正确;
    B、是轴对称图形,故本选项错误;
    C、是轴对称图形,故本选项错误;
    D、是轴对称图形,故本选项错误.
    故选A.
    【点睛】
    本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    10、C
    【解析】
    【分析】设每个小箱子装洗衣粉x千克,根据题意列方程即可.
    【详解】设每个小箱子装洗衣粉x千克,由题意得:
    4x+2=36,
    解得:x=8.5,
    即每个小箱子装洗衣粉8.5千克,
    故选C.
    【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.
    【详解】
    .
    【点睛】
    考点:二次根式的加减法.
    12、
    【解析】
    延长GF与CD交于点D,过点E作交DF于点M,设正方形的边长为,则解直角三角形可得,根据正切的定义即可求得的正切值
    【详解】
    延长GF与CD交于点D,过点E作交DF于点M,

    设正方形的边长为,则
    ,






    故答案为:
    【点睛】
    考查正多边形的性质,锐角三角函数,构造直角三角形是解题的关键.
    13、2
    【解析】
    如图,过A点作AE⊥y轴,垂足为E,

    ∵点A在双曲线上,∴四边形AEOD的面积为1
    ∵点B在双曲线上,且AB∥x轴,∴四边形BEOC的面积为3
    ∴四边形ABCD为矩形,则它的面积为3-1=2
    14、-4
    【解析】
    :由反比例函数解析式可知:系数,
    ∵S△AOB=2即,∴;
    又由双曲线在二、四象限k<0,∴k=-4
    15、(-)cm2
    【解析】
    S阴影=S扇形-S△OBD= 52-×5×5=.
    故答案是: .
    16、平移,轴对称
    【解析】
    分析:根据平移的性质和轴对称的性质即可得到由△OCD得到△AOB的过程.
    详解:△ABC向上平移5个单位,再沿y轴对折,得到△DEF,
    故答案为:平移,轴对称.
    点睛:考查了坐标与图形变化-旋转,平移,轴对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.

    三、解答题(共8题,共72分)
    17、(1)(2,﹣2);
    (2)(1,0);
    (3)1.

    【解析】
    试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;
    (2)根据位似图形的性质得出对应点位置,从而得到点的坐标;
    (3)利用等腰直角三角形的性质得出△A2B2C2的面积.
    试题解析:(1)如图所示:C1(2,﹣2);
    故答案为(2,﹣2);
    (2)如图所示:C2(1,0);
    故答案为(1,0);
    (3)∵=20,=20,=40,
    ∴△A2B2C2是等腰直角三角形,
    ∴△A2B2C2的面积是:××=1平方单位.
    故答案为1.

    考点:1、平移变换;2、位似变换;3、勾股定理的逆定理
    18、(1)12;22;12;4;50;(2)详见解析;(3)1.
    【解析】
    (1)求出各自的人数,补全表格即可;
    (2)根据调整后的数据,补全条形统计图即可;
    (3)根据“游戏”人数占的百分比,乘以1500即可得到结果.
    【详解】
    解:(1)填表如下:
    体能等级
    调整前人数
    调整后人数
    优秀
    8
    12
    良好
    16
    22
    及格
    12
    12
    不及格
    4
    4
    合计
    40
    50
    故答案为12;22;12;4;50;
    (2)补全条形统计图,如图所示:

    (3)抽取的学生中体能测试的优秀率为24%,
    则该校体能测试为“优秀”的人数为1500×24%=1(人).
    【点睛】
    本题考查了统计表与条形统计图的知识点,解题的关键是熟练的掌握统计表与条形统计图的相关知识点.
    19、(1)y=x1﹣4x+6;(1)D点的坐标为(6,0);(3)存在.当点C的坐标为(4,1)时,△CBD的周长最小
    【解析】
    (1)只需运用待定系数法就可求出二次函数的解析式;
    (1)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D的坐标;
    (3)连接CA,由于BD是定值,使得△CBD的周长最小,只需CD+CB最小,根据抛物线是轴对称图形可得CA=CD,只需CA+CB最小,根据“两点之间,线段最短”可得:当点A、C、B三点共线时,CA+CB最小,只需用待定系数法求出直线AB的解析式,就可得到点C的坐标.
    【详解】
    (1)把A(1,0),B(8,6)代入,得

    解得:
    ∴二次函数的解析式为;
    (1)由,得
    二次函数图象的顶点坐标为(4,﹣1).
    令y=0,得,
    解得:x1=1,x1=6,
    ∴D点的坐标为(6,0);
    (3)二次函数的对称轴上存在一点C,使得的周长最小.
    连接CA,如图,
    ∵点C在二次函数的对称轴x=4上,
    ∴xC=4,CA=CD,
    ∴的周长=CD+CB+BD=CA+CB+BD,
    根据“两点之间,线段最短”,可得
    当点A、C、B三点共线时,CA+CB最小,
    此时,由于BD是定值,因此的周长最小.
    设直线AB的解析式为y=mx+n,
    把A(1,0)、B(8,6)代入y=mx+n,得

    解得:
    ∴直线AB的解析式为y=x﹣1.
    当x=4时,y=4﹣1=1,
    ∴当二次函数的对称轴上点C的坐标为(4,1)时,的周长最小.

    【点睛】
    本题考查了(1)二次函数综合题;(1)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两点之间线段最短.
    20、(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.
    【解析】
    (1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;
    (2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为[7-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;
    (3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.
    【详解】
    (1)设大货车用x辆,小货车用y辆,根据题意得:
    解得:.∴大货车用8辆,小货车用7辆.
    (2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x为整数).
    (3)由题意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,
    ∵y=100x+1,k=100>0,y随x的增大而增大,∴当x=5时,y最小,
    最小值为y=100×5+1=9900(元).
    答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.
    21、(1)证明见解析;(1);(3)1.
    【解析】
    (1)要证明DE是的⊙O切线,证明OG⊥DE即可;
    (1)先证明△GBA∽△EBG,即可得出=,根据已知条件即可求出BE;
    (3)先证明△AGB≌△CGB,得出BC=AB=6,BE=4.8再根据OG∥BE得出=,即可计算出AD.
    【详解】
    证明:(1)如图,连接OG,GB,

    ∵G是弧AF的中点,
    ∴∠GBF=∠GBA,
    ∵OB=OG,
    ∴∠OBG=∠OGB,
    ∴∠GBF=∠OGB,
    ∴OG∥BC,
    ∴∠OGD=∠GEB,
    ∵DE⊥CB,
    ∴∠GEB=90°,
    ∴∠OGD=90°,
    即OG⊥DE且G为半径外端,
    ∴DE为⊙O切线;
    (1)∵AB为⊙O直径,
    ∴∠AGB=90°,
    ∴∠AGB=∠GEB,且∠GBA=∠GBE,
    ∴△GBA∽△EBG,
    ∴,
    ∴;
    (3)AD=1,根据SAS可知△AGB≌△CGB,
    则BC=AB=6,
    ∴BE=4.8,
    ∵OG∥BE,
    ∴,即,
    解得:AD=1.
    【点睛】
    本题考查了相似三角形与全等三角形的判定与性质与切线的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质与切线的性质.
    22、每件乙种商品的价格为1元,每件甲种商品的价格为70元
    【解析】
    设每件甲种商品的价格为x元,则每件乙种商品的价格为(x-10)元,根据数量=总价÷单价结合用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,即可得出关于x的分式方程,解之并检验后即可得出结论.
    【详解】
    解:
    设每件甲种商品的价格为x元,则每件乙种商品的价格为(x﹣10)元,
    根据题意得:,
    解得:x=70,
    经检验,x=70是原方程的解,
    ∴x﹣10=1.
    答:每件乙种商品的价格为1元,每件甲种商品的价格为70元.
    【点睛】
    本题考查了分式方程的应用,解题的关键是:根据数量=总价÷单价,列出分式方程.
    23、 (1)见解析 (2)选择摇奖
    【解析】
    试题分析:(1)画树状图列出所有等可能结果,再让所求的情况数除以总情况数即为所求的概率;
    (2)算出相应的平均收益,比较大小即可.
    试题解析:
    (1)树状图为:

    ∴一共有6种情况,摇出一红一白的情况共有4种,
    ∴摇出一红一白的概率=;
    (2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,
    ∴摇奖的平均收益是:×18+×24+×18=22,
    ∵22>20,
    ∴选择摇奖.
    【点睛】主要考查的是概率的计算,画树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    24、作图见解析;CE=4.
    【解析】
    分析:利用数形结合的思想解决问题即可.
    详解:如图所示,矩形ABCD和△ABE即为所求;CE=4.

    点睛:本题考查作图-应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题.

    相关试卷

    昭通市重点中学2021-2022学年中考数学模拟预测题含解析:

    这是一份昭通市重点中学2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,-2的绝对值是,的相反数是,下列计算正确的是等内容,欢迎下载使用。

    上海市存志中学2021-2022学年中考数学模拟预测题含解析:

    这是一份上海市存志中学2021-2022学年中考数学模拟预测题含解析,共24页。试卷主要包含了下列等式正确的是等内容,欢迎下载使用。

    2022届甘肃省武威凉州区四校联考中考数学模拟预测题含解析:

    这是一份2022届甘肃省武威凉州区四校联考中考数学模拟预测题含解析,共19页。试卷主要包含了的值为,若,则x-y的正确结果是,下列运算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map