|试卷下载
终身会员
搜索
    上传资料 赚现金
    福建省厦门五中学2022年中考数学模拟精编试卷含解析
    立即下载
    加入资料篮
    福建省厦门五中学2022年中考数学模拟精编试卷含解析01
    福建省厦门五中学2022年中考数学模拟精编试卷含解析02
    福建省厦门五中学2022年中考数学模拟精编试卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省厦门五中学2022年中考数学模拟精编试卷含解析

    展开
    这是一份福建省厦门五中学2022年中考数学模拟精编试卷含解析,共19页。试卷主要包含了-的立方根是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为(  )

    A.5cm B.12cm C.16cm D.20cm
    2.若正六边形的半径长为4,则它的边长等于( )
    A.4 B.2 C. D.
    3.若关于x的不等式组只有5个整数解,则a的取值范围( )
    A. B. C. D.
    4.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是(  )

    A.100° B.80° C.60° D.50°
    5.某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是(  )

    A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5
    C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×5
    6.-的立方根是( )
    A.-8 B.-4 C.-2 D.不存在
    7.如图,平行四边形 ABCD 中, E为 BC 边上一点,以 AE 为边作正方形AEFG,若 ,,则 的度数是

    A. B. C. D.
    8.已知二次函数 图象上部分点的坐标对应值列表如下:
    x


    -3
    -2
    -1
    0
    1
    2

    y


    2
    -1
    -2
    -1
    2
    7

    则该函数图象的对称轴是( )
    A.x=-3 B.x=-2 C.x=-1 D.x=0
    9.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
    成绩






    人数






    这些运动员跳高成绩的中位数是(  )
    A. B. C. D.
    10.下列图标中,既是轴对称图形,又是中心对称图形的是(   )
    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k =________

    12.8的立方根为_______.
    13.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为9m,那么这栋建筑物的高度为_____m.
    14.将三角形纸片()按如图所示的方式折叠,使点落在边上,记为点,折痕为,已知,,若以点,,为顶点的三角形与相似,则的长度是______.

    15.关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.
    16.如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为_____.

    17.A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.

    三、解答题(共7小题,满分69分)
    18.(10分)工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:
    生产甲产品件数(件)
    生产乙产品件数(件)
    所用总时间(分钟)
    10
    10
    350
    30
    20
    850
    (1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?
    (2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品a件(a为正整数).
    ①用含a的代数式表示小王四月份生产乙种产品的件数;
    ②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a的取值范围.
    19.(5分)某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元.在该产品的试销期间,为了促销,鼓励商家购买该新型品,公司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元.商家一次购买这种产品多少件时,销售单价恰好为2800元?设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)
    20.(8分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.
    请根据图中信息解答下列问题:求这天的温度y与时间x(0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?

    21.(10分)如图,四边形ABCD是边长为2的正方形,以点A,B,C为圆心作圆,分别交BA,CB,DC的延长线于点E,F,G.
    (1)求点D沿三条圆弧运动到点G所经过的路线长;
    (2)判断线段GB与DF的长度关系,并说明理由.

    22.(10分)如图1,在菱形ABCD中,AB=,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.

    (1)求证:BE=DF;
    (2)当t=   秒时,DF的长度有最小值,最小值等于   ;
    (3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?
    23.(12分) “垃圾不落地,城市更美丽”.某中学为了了解七年级学生对这一倡议的落实情况,学校安排政教处在七年级学生中随机抽取了部分学生,并针对学生“是否随手丢垃圾”这一情况进行了问卷调查,统计结果为:A为从不随手丢垃圾;B为偶尔随手丢垃圾;C为经常随手丢垃圾三项.要求每位被调查的学生必须从以上三项中选一项且只能选一项.现将调查结果绘制成以下来不辜负不完整的统计图.

    请你根据以上信息,解答下列问题:
    (1)补全上面的条形统计图和扇形统计图;
    (2)所抽取学生“是否随手丢垃圾”情况的众数是   ;
    (3)若该校七年级共有1500名学生,请你估计该年级学生中“经常随手丢垃圾”的学生约有多少人?谈谈你的看法?
    24.(14分)(1)计算:()﹣3×[﹣()3]﹣4cos30°+;
    (2)解方程:x(x﹣4)=2x﹣8



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.
    【详解】
    延长AB、DC相交于F,则BFC构成直角三角形,

    运用勾股定理得:
    BC2=(15-3)2+(1-4)2=122+162=400,
    所以BC=1.
    则剪去的直角三角形的斜边长为1cm.
    故选D.
    【点睛】
    本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.
    2、A
    【解析】
    试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A.
    考点:正多边形和圆.
    3、A
    【解析】
    分别解两个不等式得到得x<20和x>3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2a<x<20,且整数解为15、16、17、18、19,得到14≤3-2a<15,然后再解关于a的不等式组即可.
    【详解】

    解①得x<20
    解②得x>3-2a,
    ∵不等式组只有5个整数解,
    ∴不等式组的解集为3-2a<x<20,
    ∴14≤3-2a<15,

    故选:A
    【点睛】
    本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a<15是解此题的关键.
    4、B
    【解析】
    试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.
    故选:B

    5、D
    【解析】
    试题分析:由题意得;如图知;矩形的长="7+2x" 宽=5+2x ∴矩形衬底的面积=3倍的照片的面积,可得方程为(7+2X)(5+2X)=3×7×5
    考点:列方程
    点评:找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题.
    6、C
    【解析】
    分析:首先求出的值,然后根据立方根的计算法则得出答案.
    详解:∵,, ∴的立方根为-2,故选C.
    点睛:本题主要考查的是算术平方根与立方根,属于基础题型.理解算术平方根与立方根的含义是解决本题的关键.
    7、A
    【解析】
    分析:首先求出∠AEB,再利用三角形内角和定理求出∠B,最后利用平行四边形的性质得∠D=∠B即可解决问题.
    详解:∵四边形ABCD是正方形,
    ∴∠AEF=90°,
    ∵∠CEF=15°,
    ∴∠AEB=180°-90°-15°=75°,
    ∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,
    ∵四边形ABCD是平行四边形,
    ∴∠D=∠B=65°
    故选A.
    点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.
    8、C
    【解析】
    由当x=-2和x=0时,y的值相等,利用二次函数图象的对称性即可求出对称轴.
    【详解】
    解:∵x=-2和x=0时,y的值相等,
    ∴二次函数的对称轴为,
    故答案为:C.
    【点睛】
    本题考查了二次函数的性质,利用二次函数图象的对称性找出对称轴是解题的关键.
    9、C
    【解析】
    根据中位数的定义解答即可.
    【详解】
    解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1.
    所以这些运动员跳高成绩的中位数是1.1.
    故选:C.
    【点睛】
    本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
    10、D
    【解析】
    试题分析:根据轴对称图形和中心对称图形的概念,可知:
    A既不是轴对称图形,也不是中心对称图形,故不正确;
    B不是轴对称图形,但是中心对称图形,故不正确;
    C是轴对称图形,但不是中心对称图形,故不正确;
    D即是轴对称图形,也是中心对称图形,故正确.
    故选D.
    考点:轴对称图形和中心对称图形识别

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    分析:设D(a,),利用点D为矩形OABC的AB边的中点得到B(2a,),则E(2a,),然后利用三角形面积公式得到•a•(-)=1,最后解方程即可.
    详解:设D(a,),
    ∵点D为矩形OABC的AB边的中点,
    ∴B(2a,),
    ∴E(2a,),
    ∵△BDE的面积为1,
    ∴•a•(-)=1,解得k=1.
    故答案为1.
    点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k的取值.
    12、2.
    【解析】
    根据立方根的定义可得8的立方根为2.
    【点睛】
    本题考查了立方根.
    13、1
    【解析】
    分析:根据同时同地的物高与影长成正比列式计算即可得解.
    详解:设这栋建筑物的高度为xm,
    由题意得,,
    解得x=1,
    即这栋建筑物的高度为1m.
    故答案为1.
    点睛:同时同地的物高与影长成正比,利用相似三角形的相似比,列出方程,通过解方程求出这栋高楼的高度,体现了方程的思想.
    14、或2
    【解析】
    由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.
    【详解】
    由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x
    当△B’FC∽△ABC,有,得到方程,解得x=,故BF=;
    当△FB’C∽△ABC,有,得到方程,解得x=2,故BF=2;
    综上BF的长度可以为或2.
    【点睛】
    本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.
    15、k≥﹣1
    【解析】
    分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.
    详解:∵关于x的一元二次方程x2+1x-k=0有实数根,
    ∴△=12-1×1×(-k)=16+1k≥0,
    解得:k≥-1.
    故答案为k≥-1.
    点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.
    16、﹣1.
    【解析】
    试题分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等.连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出绿色部分的面积=S△AOD,利用阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色,故可得出结论.
    解:∵扇形OAB的圆心角为90°,扇形半径为2,
    ∴扇形面积为:=π(cm2),
    半圆面积为:×π×12=(cm2),
    ∴SQ+SM =SM+SP=(cm2),
    ∴SQ=SP,
    连接AB,OD,
    ∵两半圆的直径相等,
    ∴∠AOD=∠BOD=45°,
    ∴S绿色=S△AOD=×2×1=1(cm2),
    ∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).
    故答案为﹣1.

    考点:扇形面积的计算.
    17、
    【解析】
    由图象得出解析式后联立方程组解答即可.
    【详解】
    由图象可得:y甲=4t(0≤t≤5);y乙=;
    由方程组,解得t=.
    故答案为.
    【点睛】
    此题考查一次函数的应用,关键是由图象得出解析式解答.

    三、解答题(共7小题,满分69分)
    18、(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)①600-;② a≤1.
    【解析】
    (1)设生产一件甲种产品和每生产一件乙种产品分别需要x分钟、y分钟,根据图示可得:生产10件甲产品,10件乙产品用时350分钟,生产30件甲产品,20件乙产品,用时850分钟,列方程组求解;
    (2)①根据生产一件甲种产品和每生产一件乙种产品分别需要的时间关系即可表示出结果;
    ②根据“小王四月份的工资不少于1500元”即可列出不等式.
    【详解】
    (1)设生产一件甲种产品需x分钟,生产一件乙种产品需y分钟,由题意得:

    解这个方程组得:,
    答:小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;
    (2)①∵生产一件甲种产品需15分钟,生产一件乙种产品需20分钟,
    ∴一小时生产甲产品4件,生产乙产品3件,
    所以小王四月份生产乙种产品的件数:3(25×8﹣)=600-;
    ②依题意:1.5a+2.8(600-)≥1500,
    1680﹣0.6a≥1500,
    解得:a≤1.
    【点睛】
    本题考查了二元一次方程组的应用、一元一次不等式的应用,正确理解题意,找准题中的等量关系列出方程组、不等关系列出不等式是解题的关键.
    19、(1)商家一次购买这种产品1件时,销售单价恰好为2800元;(2)当0≤x≤10时,y=700x,当10<x≤1时,y=﹣5x2+750x,当x>1时,y=300x;(3)公司应将最低销售单价调整为2875元.
    【解析】
    (1)设件数为x,则销售单价为3200-5(x-10)元,根据销售单价恰好为2800元,列方程求解;
    (2)由利润y=(销售单价-成本单价)×件数,及销售单价均不低于2800元,按0≤x≤10,10<x≤50两种情况列出函数关系式;
    (3)由(2)的函数关系式,利用二次函数的性质求利润的最大值,并求出最大值时x的值,确定销售单价.
    【详解】
    (1)设商家一次购买这种产品x件时,销售单价恰好为2800元.
    由题意得:3200﹣5(x﹣10)=2800,解得:x=1.
    答:商家一次购买这种产品1件时,销售单价恰好为2800元;
    (2)设商家一次购买这种产品x件,开发公司所获的利润为y元,由题意得:
    当0≤x≤10时,y=(3200﹣2500)x=700x,
    当10<x≤1时,y=[3200﹣5(x﹣10)﹣2500]•x=﹣5x2+750x,
    当x>1时,y=(2800﹣2500)•x=300x;
    (3)因为要满足一次购买数量越多,所获利润越大,所以y随x增大而增大,
    函数y=700x,y=300x均是y随x增大而增大,
    而y=﹣5x2+750x=﹣5(x﹣75)2+28125,在10<x≤75时,y随x增大而增大.
    由上述分析得x的取值范围为:10<x≤75时,即一次购买75件时,恰好是最低价,
    最低价为3200﹣5•(75﹣10)=2875元,
    答:公司应将最低销售单价调整为2875元.
    【点睛】
    本题考查了一次、二次函数的性质在实际生活中的应用.最大销售利润的问题常利二次函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.
    20、(1)y关于x的函数解析式为;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
    【解析】
    分析:(1)应用待定系数法分段求函数解析式;
    (2)观察图象可得;
    (3)代入临界值y=10即可.
    详解:(1)设线段AB解析式为y=k1x+b(k≠0)
    ∵线段AB过点(0,10),(2,14)
    代入得
    解得
    ∴AB解析式为:y=2x+10(0≤x<5)
    ∵B在线段AB上当x=5时,y=20
    ∴B坐标为(5,20)
    ∴线段BC的解析式为:y=20(5≤x<10)
    设双曲线CD解析式为:y=(k2≠0)
    ∵C(10,20)
    ∴k2=200
    ∴双曲线CD解析式为:y=(10≤x≤24)
    ∴y关于x的函数解析式为:
    (2)由(1)恒温系统设定恒温为20°C
    (3)把y=10代入y=中,解得,x=20
    ∴20-10=10
    答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
    点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.
    21、(1)6π;(2)GB=DF,理由详见解析.
    【解析】
    (1)根据弧长公式l= 计算即可;
    (2)通过证明给出的条件证明△FDC≌△GBC即可得到线段GB与DF的长度关系.
    【详解】
    解:(1)∵AD=2,∠DAE=90°,
    ∴弧DE的长 l1= =π,

    同理弧EF的长 l2= =2π,弧FG的长 l3= =3π,
    所以,点D运动到点G所经过的路线长l=l1+l2+l3=6π.
    (2)GB=DF.
    理由如下:延长GB交DF于H.
    ∵CD=CB,∠DCF=∠BCG,CF=CG,
    ∴△FDC≌△GBC.
    ∴GB=DF.
    【点睛】
    本题考查弧长公式以及全等三角形的判定和性质,题目比较简单,解题关键掌握是弧长公式.
    22、(1)见解析;(2)t=(6+6),最小值等于12;(3)t=6秒或6秒时,△EPQ是直角三角形
    【解析】
    (1)由∠ECF=∠BCD得∠DCF=∠BCE,结合DC=BC、CE=CF证△DCF≌△BCE即可得;
    (2)作BE′⊥DA交DA的延长线于E′.当点E运动至点E′时,由DF=BE′知此时DF最小,求得BE′、AE′即可得答案;
    (3)①∠EQP=90°时,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根据AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;
    ②∠EPQ=90°时,由菱形ABCD的对角线AC⊥BD知EC与AC重合,可得DE=6.
    【详解】
    (1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,
    ∴∠DCF=∠BCE,
    ∵四边形ABCD是菱形,
    ∴DC=BC,
    在△DCF和△BCE中,
    ,
    ∴△DCF≌△BCE(SAS),
    ∴DF=BE;
    (2)如图1,作BE′⊥DA交DA的延长线于E′.

    当点E运动至点E′时,DF=BE′,此时DF最小,
    在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,
    ∴设AE′=x,则BE′=2x,
    ∴AB=x=6,x=6,
    则AE′=6
    ∴DE′=6+6,DF=BE′=12,
    时间t=6+6,
    故答案为:6+6,12;
    (3)∵CE=CF,
    ∴∠CEQ<90°,
    ①当∠EQP=90°时,如图2①,

    ∵∠ECF=∠BCD,BC=DC,EC=FC,
    ∴∠CBD=∠CEF,
    ∵∠BPC=∠EPQ,
    ∴∠BCP=∠EQP=90°,
    ∵AB=CD=6,tan∠ABC=tan∠ADC=2,
    ∴DE=6,
    ∴t=6秒;
    ②当∠EPQ=90°时,如图2②,

    ∵菱形ABCD的对角线AC⊥BD,
    ∴EC与AC重合,
    ∴DE=6,
    ∴t=6秒,
    综上所述,t=6秒或6秒时,△EPQ是直角三角形.
    【点睛】
    此题是菱形与动点问题,考查菱形的性质,三角形全等的判定定理,等腰三角形的性质,最短路径问题,注意(3)中的直角没有明确时应分情况讨论解答.
    23、 (1)补全图形见解析;(2)B;(3)估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督.
    【解析】
    (1)根据被调查的总人数求出C情况的人数与B情况人数所占比例即可;
    (2)根据众数的定义求解即可;
    (3)该年级学生中“经常随手丢垃圾”的学生=总人数×C情况的比值.
    【详解】
    (1)∵被调查的总人数为60÷30%=200人,
    ∴C情况的人数为200﹣(60+130)=10人,B情况人数所占比例为×100%=65%,
    补全图形如下:

    (2)由条形图知,B情况出现次数最多,
    所以众数为B,
    故答案为B.
    (3)1500×5%=75,
    答:估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督.
    【点睛】
    本题考查了众数与扇形统计图与条形统计图,解题的关键是熟练的掌握众数与扇形统计图与条形统计图的相关知识点.
    24、(1)3;(1)x1=4,x1=1.
    【解析】
    (1)根据有理数的混合运算法则计算即可;
    (1)先移项,再提取公因式求解即可.
    【详解】
    解:(1)原式=8×(﹣)﹣4×+1
    =8×﹣1+1
    =3;
    (1)移项得:x(x﹣4)﹣1(x﹣4)=0,
    (x﹣4)(x﹣1)=0,
    x﹣4=0,x﹣1=0,
    x1=4,x1=1.
    【点睛】
    本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.

    相关试卷

    福建省厦门市四校2021-2022学年中考数学模拟精编试卷含解析: 这是一份福建省厦门市四校2021-2022学年中考数学模拟精编试卷含解析,共25页。

    福建省厦门市湖里区湖里中学2021-2022学年中考数学模拟精编试卷含解析: 这是一份福建省厦门市湖里区湖里中学2021-2022学年中考数学模拟精编试卷含解析,共15页。试卷主要包含了考生要认真填写考场号和座位序号,下列实数中,在2和3之间的是,-3的相反数是等内容,欢迎下载使用。

    2022届福建省宁化城东中学中考数学模拟精编试卷含解析: 这是一份2022届福建省宁化城东中学中考数学模拟精编试卷含解析,共17页。试卷主要包含了比较4,,的大小,正确的是,如图,点P,-5的倒数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map