|试卷下载
终身会员
搜索
    上传资料 赚现金
    福建省泉州市洛江区重点达标名校2022年中考数学最后冲刺浓缩精华卷含解析
    立即下载
    加入资料篮
    福建省泉州市洛江区重点达标名校2022年中考数学最后冲刺浓缩精华卷含解析01
    福建省泉州市洛江区重点达标名校2022年中考数学最后冲刺浓缩精华卷含解析02
    福建省泉州市洛江区重点达标名校2022年中考数学最后冲刺浓缩精华卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省泉州市洛江区重点达标名校2022年中考数学最后冲刺浓缩精华卷含解析

    展开
    这是一份福建省泉州市洛江区重点达标名校2022年中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,的值是,不等式组的解集在数轴上表示为,已知等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是(  )

    A. B.
    C. D.
    2.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是(  )

    A.(6,3) B.(6,4) C.(7,4) D.(8,4)
    3.如图,AB∥CD,那么(  )

    A.∠BAD与∠B互补 B.∠1=∠2 C.∠BAD与∠D互补 D.∠BCD与∠D互补
    4.如图是某几何体的三视图,则该几何体的全面积等于(  )

    A.112 B.136 C.124 D.84
    5.的值是
    A. B. C. D.
    6.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )

    A.0.7米 B.1.5米 C.2.2米 D.2.4米
    7.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为(  )

    A. B.π C.2π D.3π
    8.不等式组的解集在数轴上表示为(  )
    A. B. C. D.
    9.如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( )

    A.28cm2 B.27cm2 C.21cm2 D.20cm2
    10.已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为(  )

    A.3:2 B.9:4 C.2:3 D.4:9
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是______.

    12.小青在八年级上学期的数学成绩如下表所示.

    平时测验
    期中考试
    期末考试
    成绩
    86
    90
    81
    如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是_____分.

    13.在△ABC中,∠ABC<20°,三边长分别为a,b,c,将△ABC沿直线BA翻折,得到△ABC1;然后将△ABC1沿直线BC1翻折,得到△A1BC1;再将△A1BC1沿直线A1B翻折,得到△A1BC2;…,若翻折4次后,得到图形A2BCAC1A1C2的周长为a+c+5b,则翻折11次后,所得图形的周长为_____________.(结果用含有a,b,c的式子表示)

    14.如图,在边长为1的正方形格点图中,B、D、E为格点,则∠BAC的正切值为_____.

    15.△ABC的顶点都在方格纸的格点上,则sinA=_ ▲ .

    16.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于______.

    三、解答题(共8题,共72分)
    17.(8分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.
    (1)判断直线EF与⊙O的位置关系,并说明理由;
    (2)若∠A=30°,求证:DG=DA;
    (3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.

    18.(8分)如图,矩形ABCD中,点E为BC上一点,DF⊥AE于点F,求证:∠AEB=∠CDF.

    19.(8分)如图,在四边形ABCD中,点E是对角线BD上的一点,EA⊥AB,EC⊥BC,且EA=EC.求证:AD=CD.

    20.(8分)如图,已知△ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,连结BD,CE交于点F,设AB=m,BC=n.
    (1)求证:∠BDA=∠ECA.
    (2)若m=,n=3,∠ABC=75°,求BD的长.
    (3)当∠ABC=____时,BD最大,最大值为____(用含m,n的代数式表示)
    (4)试探究线段BF,AE,EF三者之间的数量关系。

    21.(8分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等.
    (1)求每台电冰箱与空调的进价分别是多少?
    (2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种?
    (3)实际进货时,厂家对电冰箱出厂价下调K(0<K<150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案.
    22.(10分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(-1,6),B(a,-2).求一次函数与反比例函数的解析式;根据图象直接写出y1>y2 时,x的取值范围.

    23.(12分)正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.
    (1)如图1,连接AB′.
    ①若△AEB′为等边三角形,则∠BEF等于多少度.
    ②在运动过程中,线段AB′与EF有何位置关系?请证明你的结论.
    (2)如图2,连接CB′,求△CB′F周长的最小值.
    (3)如图3,连接并延长BB′,交AC于点P,当BB′=6时,求PB′的长度.

    24.如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.
    求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    根据相似三角形的判定方法一一判断即可.
    【详解】
    解:因为中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,
    故选:B.
    【点睛】
    本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
    2、C
    【解析】
    根据题意知小李所对应的坐标是(7,4).
    故选C.
    3、C
    【解析】
    分清截线和被截线,根据平行线的性质进行解答即可.
    【详解】
    解:∵AB∥CD,
    ∴∠BAD与∠D互补,即C选项符合题意;
    当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,
    故选项A、B、D都不合题意,
    故选:C.
    【点睛】
    本题考查了平行线的性质,熟记性质并准确识图是解题的关键.
    4、B
    【解析】
    试题解析:该几何体是三棱柱.
    如图:

    由勾股定理

    全面积为:
    故该几何体的全面积等于1.
    故选B.
    5、D
    【解析】
    根据特殊角三角函数值,可得答案.
    【详解】
    解:,
    故选:D.
    【点睛】
    本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
    6、C
    【解析】
    在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.
    【详解】
    在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.

    【点睛】
    本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.
    7、A
    【解析】
    根据旋转的性质和弧长公式解答即可.
    【详解】
    解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,
    ∴∠AOC=90°,
    ∵OC=3,
    ∴点A经过的路径弧AC的长== ,
    故选:A.
    【点睛】
    此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.
    8、A
    【解析】
    根据不等式组的解集在数轴上表示的方法即可解答.
    【详解】
    ∵x≥﹣2,故以﹣2为实心端点向右画,x<1,故以1为空心端点向左画.
    故选A.
    【点睛】
    本题考查了不等式组解集的在数轴上的表示方法,不等式的解集在数轴上表示方法为:>、≥向右画,<、≤向左画, “≤”、“≥”要用实心圆点表示;“<”、“>”要用空心圆点表示.
    9、B
    【解析】
    根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.
    【详解】

    解:依题意,在矩形ABDC中截取矩形ABFE,
    则矩形ABDC∽矩形FDCE,

    设DF=xcm,得到:
    解得:x=4.5,
    则剩下的矩形面积是:4.5×6=17cm1.
    【点睛】
    本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.
    10、A
    【解析】
    试题解析:过点D作DE⊥AB于E,DF⊥AC于F.

    ∵AD为∠BAC的平分线,
    ∴DE=DF,又AB:AC=3:2,

    故选A.
    点睛:角平分线上的点到角两边的距离相等.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    如图,分别过点A,B作AE⊥,BF⊥,BD⊥,垂足分别为E,F,D.

    ∵△ABC为等腰直角三角形,∴AC=BC,∠ACB=90°,∴∠ACE+∠BCF=90°.∵AE⊥,BF⊥∴∠CAE+∠ACE=90°,∠CBF+∠BCF=90°,
    ∴∠CAE=∠BCF,∠ACE=∠CBF.
    ∵∠CAE=∠BCF,AC=BC,∠ACE=∠CBF,∴△ACE≌△CBF,∴CE=BF,AE=CF.设平行线间距离为d=l,则CE=BF=BD=1,AE=CF=2,AD=EF=CE+CF=3,
    ∴tanα=tan∠BAD==.
    点睛:分别过点A,B作AE⊥,BF⊥,BD⊥,垂足分别为E,F,D,可根据ASA证明△ACE≌△CBF,设平行线间距离为d=1,进而求出AD、BD的值;本题考查了全等三角形的判定和锐角三角函数,解题的关键是合理添加辅助线构造全等三角形;
    12、84.2
    【解析】
    小青该学期的总评成绩为:86×10%+90×30%+81×60%=84.2(分),故答案为: 84.2.
    13、2a+12b
    【解析】
    如图2,翻折4次时,左侧边长为c,如图2,翻折5次,左侧边长为a,所以翻折4次后,如图1,由折叠得:AC=A= ==,所以图形的周长为:a+c+5b,

    因为∠ABC<20°,所以,
    翻折9次后,所得图形的周长为: 2a+10b,故答案为: 2a+10b.
    14、
    【解析】
    根据圆周角定理可得∠BAC=∠BDC,然后求出tan∠BDC的值即可.
    【详解】
    由图可得,∠BAC=∠BDC,
    ∵⊙O在边长为1的网格格点上,
    ∴BE=3,DB=4,
    则tan∠BDC==
    ∴tan∠BAC=
    故答案为
    【点睛】
    本题考查的知识点是圆周角定理及其推论及解直角三角形,解题的关键是熟练的掌握圆周角定理及其推论及解直角三角形.
    15、
    【解析】
    在直角△ABD中利用勾股定理求得AD的长,然后利用正弦的定义求解.
    【详解】

    在直角△ABD中,BD=1,AB=2,
    则AD===,
    则sinA= ==.
    故答案是:.
    16、
    【解析】
    此题考查了二次函数的最值,勾股定理,等腰三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.
    【详解】
    过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE= ,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出= ,代入求出BF和CM,相加即可求出答案.
    过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,
    ∵BF⊥OA,DE⊥OA,CM⊥OA,
    ∴BF∥DE∥CM.
    ∵OD=AD=3,DE⊥OA,
    ∴OE=EA= OA=2,
    由勾股定理得:DE= =5,设P(2x,0),根据二次函数的对称性得出OF=PF=x,
    ∵BF∥DE∥CM,
    ∴△OBF∽△ODE,△ACM∽△ADE,
    ∴,
    ∵AM=PM= (OA-OP)= (4-2x)=2-x,
    即,
    解得:
    ∴BF+CM= .

    故答案为.
    【点睛】
    考核知识点:二次函数综合题.熟记性质,数形结合是关键.

    三、解答题(共8题,共72分)
    17、(1)EF是⊙O的切线,理由详见解析;(1)详见解析;(3)⊙O的半径的长为1.
    【解析】
    (1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠
    OEG=90°,即可得到结论;
    (1)根据含30°的直角三角形的性质证明即可;
    (3)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得
    ∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.
    【详解】
    解:(1)连接OE,

    ∵OA=OE,
    ∴∠A=∠AEO,
    ∵BF=EF,
    ∴∠B=∠BEF,
    ∵∠ACB=90°,
    ∴∠A+∠B=90°,
    ∴∠AEO+∠BEF=90°,
    ∴∠OEG=90°,
    ∴EF是⊙O的切线;
    (1)∵∠AED=90°,∠A=30°,
    ∴ED=AD,
    ∵∠A+∠B=90°,
    ∴∠B=∠BEF=60°,
    ∵∠BEF+∠DEG=90°,
    ∴∠DEG=30°,
    ∵∠ADE+∠A=90°,
    ∴∠ADE=60°,
    ∵∠ADE=∠EGD+∠DEG,
    ∴∠DGE=30°,
    ∴∠DEG=∠DGE,
    ∴DG=DE,
    ∴DG=DA;
    (3)∵AD是⊙O的直径,
    ∴∠AED=90°,
    ∵∠A=30°,
    ∴∠EOD=60°,
    ∴∠EGO=30°,
    ∵阴影部分的面积
    解得:r1=4,即r=1,
    即⊙O的半径的长为1.
    【点睛】
    本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键.
    18、见解析.
    【解析】
    利用矩形的性质结合平行线的性质得出∠CDF+∠ADF=90°,进而得出∠CDF=∠DAF,由AD∥BC,得出答案.
    【详解】
    ∵四边形ABCD是矩形,
    ∴∠ADC=90°,AD∥BC,
    ∴∠CDF+∠ADF=90°,
    ∵DF⊥AE于点F,
    ∴∠DAF+∠ADF=90°,
    ∴∠CDF=∠DAF.
    ∵AD∥BC,
    ∴∠DAF=∠AEB,
    ∴∠AEB=∠CDF.
    【点睛】
    此题主要考查了矩形的性质以及平行线的性质,正确得出∠CDF=∠DAF是解题关键.
    19、证明见解析
    【解析】
    根据垂直的定义和直角三角形的全等判定,再利用全等三角形的性质解答即可.
    【详解】
    ∵EA⊥AB,EC⊥BC,
    ∴∠EAB=∠ECB=90°,
    在Rt△EAB与Rt△ECB中

    ∴Rt△EAB≌Rt△ECB,
    ∴AB=CB,∠ABE=∠CBE,
    ∵BD=BD,
    在△ABD与△CBD中

    ∴△ABD≌△CBD,
    ∴AD=CD.
    【点睛】
    本题考查了全等三角形的判定及性质,根据垂直的定义和直角三角形的全等判定是解题的关键.
    20、135° m+n
    【解析】
    试题分析:
    (1)由已知条件证△ABD≌△AEC,即可得到∠BDA=∠CEA;
    (2)过点E作EG⊥CB交CB的延长线于点G,由已知条件易得∠EBG=60°,BE=2,这样在Rt△BEG中可得EG=,BG=1,结合BC=n=3,可得GC=4,由长可得EC=,结合△ABD≌△AEC可得BD=EC=;
    (3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,此时BD最大=EC最大=;
    (4)由△ABD≌△AEC可得∠AEC=∠ABD,结合△ABE是等腰直角三角形可得△EFB是直角三角形及BE2=2AE2,从而可得EF2=BE2-BF2=2AE2-BF2.
    试题解析:
    (1)∵△ABE和△ACD都是等腰直角三角形,且∠EAB=∠DAC=90°,
    ∴AE=AB,AC=AD,∠EAB+∠BAC=∠BAC+∠DAC,即∠EAC=∠BAD,
    ∴△EAC≌△BAD,
    ∴∠BDA=∠ECA;
    (2)如下图,过点E作EG⊥CB交CB的延长线于点G,
    ∴∠EGB=90°,
    ∵在等腰直角△ABE,∠BAE=90°,AB=m= ,
    ∴∠ABE=45°,BE=2,
    ∵∠ABC=75°,
    ∴∠EBG=180°-75°-45°=60°,
    ∴BG=1,EG=,
    ∴GC=BG+BC=4,
    ∴CE=,
    ∵△EAC≌△BAD,
    ∴BD=EC=;

    (3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,
    ∵BD=EC,
    ∴BD最大=EC最大=,此时∠ABC=180°-∠ABE=180°-45°=135°,
    即当∠ABC=135°时,BD最大=;
    (4)∵△ABD≌△AEC,
    ∴∠AEC=∠ABD,
    ∵在等腰直角△ABE中,∠AEC+∠CEB+∠ABE=90°,
    ∴∠ABD+∠ABE+∠CEB=90°,
    ∴∠BFE=180°-90°=90°,
    ∴EF2+BF2=BE2,
    又∵在等腰Rt△ABE中,BE2=2AE2,
    ∴2AE2=EF2+BF2.
    点睛:(1)解本题第2小题的关键是过点E作EG⊥CB的延长线于点G,即可由已知条件求得BE的长,进一步求得BG和EG的长就可在Rt△EGC中求得EC的长了,结合(1)中所证的全等三角形即可得到BD的长了;(2)解第3小题时,由题意易知,当AB和BC的值确定后,BE的值就确定了,则由题意易得当E、B、C三点共线时,EC=EB+BC=是EC的最大值了.
    21、(1)每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)共有5种方案;
    (3)当100<k<150时,购进电冰箱38台,空调62台,总利润最大;当0<k<100时,购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元.
    【解析】
    (1)用“用9000元购进电冰箱的数量与用7200元购进空调数量相等”建立方程即可;(2)建立不等式组求出x的范围,代入即可得出结论;(3)建立y1=(k﹣100)x+20000,分三种情况讨论即可.
    【详解】
    (1)设每台空调的进价为m元,则每台电冰箱的进价(m+300)元,
    由题意得,,
    ∴m=1200,
    经检验,m=1200是原分式方程的解,也符合题意,
    ∴m+300=1500元,
    答:每台空调的进价为1200元,每台电冰箱的进价为1500元;
    (2)由题意,y=(1600﹣1500)x+(1400﹣1200)(100﹣x)=﹣100x+20000,
    ∵,
    ∴33≤x≤38,
    ∵x为正整数,
    ∴x=34,35,36,37,38,
    即:共有5种方案;
    (3)设厂家对电冰箱出厂价下调k(0<k<150)元后,这100台家电的销售总利润为y1元,
    ∴y1=(1600﹣1500+k)x+(1400﹣1200)(100﹣x)=(k﹣100)x+20000,
    当100<k<150时,y1随x的最大而增大,
    ∴x=38时,y1取得最大值,
    即:购进电冰箱38台,空调62台,总利润最大,
    当0<k<100时,y1随x的最大而减小,
    ∴x=34时,y1取得最大值,
    即:购进电冰箱34台,空调66台,总利润最大,
    当k=100时,无论采取哪种方案,y1恒为20000元.
    【点睛】
    本题考查了一次函数的应用,分式方程的应用,不等式组的应用,根据题意找出等量关系是解题的关键.
    22、(1)y1=-2x+4,y2=-;(2)x<-1或0 【解析】
    (1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;
    (2)找出直线在一次函数图形的上方的自变量x的取值即可.
    【详解】
    解:(1)把点A(﹣1,6)代入反比例函数(m≠0)得:m=﹣1×6=﹣6,
    ∴.
    将B(a,﹣2)代入得:,a=1,∴B(1,﹣2),将A(﹣1,6),B(1,﹣2)代入一次函数y1=kx+b得:,
    ∴,
    ∴;
    (2)由函数图象可得:x<﹣1或0<x<1.
    【点睛】
    本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键.
    23、(1)①∠BEF=60°;②A B'∥EF,证明见解析;(2)△CB′F周长的最小值5+5;(3)PB′=.
    【解析】
    (1)①当△AEB′为等边三角形时,∠AE B′=60°,由折叠可得,∠BEF= ∠BE B′= ×120°=60°;②依据AE=B′E,可得∠EA B′=∠E B′A,再根据∠BEF=∠B′EF,即可得到∠BEF=∠BA B′,进而得出EF∥A B′;
    (2)由折叠可得,CF+ B′F=CF+BF=BC=10,依据B′E+ B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,进而得到B′C最小值为5﹣5,故△CB′F周长的最小值=10+5﹣5=5+5;
    (3)将△ABB′和△APB′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,设PB′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.依据∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的长度.
    【详解】
    (1)①当△AE B′为等边三角形时,∠AE B′=60°,
    由折叠可得,∠BEF=∠BE B′=×120°=60°,
    故答案为60;
    ②A B′∥EF,
    证明:∵点E是AB的中点,
    ∴AE=BE,
    由折叠可得BE=B′E,
    ∴AE=B′E,
    ∴∠EA B′=∠E B′A,
    又∵∠BEF=∠B′EF,
    ∴∠BEF=∠BA B′,
    ∴EF∥A B′;
    (2)如图,点B′的轨迹为半圆,由折叠可得,BF=B′F,
    ∴CF+ B′F=CF+BF=BC=10,
    ∵B′E+ B′C≥CE,
    ∴B′C≥CE﹣B′E=5﹣5,
    ∴B′C最小值为5﹣5,
    ∴△CB′F周长的最小值=10+5﹣5=5+5;
    (3)如图,连接A B′,易得∠A B′B=90°,
    将△AB B′和△AP B′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,
    由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,
    由AB=10,B B′=6,可得A B′=8,
    ∴QM=QN=A B′=8,
    设P B′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.
    ∵∠BQP=90°,
    ∴22+(8﹣x)2=(6+x)2,
    解得:x=,
    ∴P B′=x=.



    【点睛】
    本题属于四边形综合题,主要考查了折叠的性质,等边三角形的性质,正方形的判定与性质以及勾股定理的综合运用,解题的关键是设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
    24、 (1)证明见解析;(2)四边形BDCF是矩形,理由见解析.
    【解析】
    (1)证明:∵CF∥AB,
    ∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,
    ∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.
    (2)四边形BDCF是矩形.
    证明:由(1)知DB=CF,又DB∥CF,
    ∴四边形BDCF为平行四边形.
    ∵AC=BC,AD=DB,∴CD⊥AB.
    ∴四边形BDCF是矩形.

    相关试卷

    2022年濉溪县重点达标名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年濉溪县重点达标名校中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了下列图形是轴对称图形的有等内容,欢迎下载使用。

    2022年福建省泉州市石狮市重点达标名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年福建省泉州市石狮市重点达标名校中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了下列计算正确的是,﹣0.2的相反数是,下列各式正确的是等内容,欢迎下载使用。

    2022届浙教版重点名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届浙教版重点名校中考数学最后冲刺浓缩精华卷含解析,共23页。试卷主要包含了如图所示的几何体的俯视图是,如图,将△ABC绕点C等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map