所属成套资源:2022-2023学年北师大九年级数学上册《 考点解读》专题训练
- 专题2.4 解一元二次方程-一因式分解法(专项训练)-2022-2023学年九年级数学上册《 考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题2.5 一元二次方程的根与系数关系(知识解读)-2022-2023学年九年级数学上册《 考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题2.5 一元二次方程的判别式、根与系数(专项训练)-2022-2023学年九年级数学上册《 考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题2.6 一元二次方程应用-变化率问题、传播、比赛问题(专项训练)-2022-2023学年九年级数学上册《考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题2.6 一元二次方程应用-几何动态问题、面积问题(专项训练)-2022-2023学年九年级数学上册《考点解读•专题训练》(北师大版) 试卷 0 次下载
专题2.5 一元二次方程的根与系数关系(能力提升)-2022-2023学年九年级数学上册《考点解读•专题训练》(北师大版)
展开这是一份专题2.5 一元二次方程的根与系数关系(能力提升)-2022-2023学年九年级数学上册《考点解读•专题训练》(北师大版),文件包含专题25一元二次方程的根与系数关系能力提升解析版docx、专题25一元二次方程的根与系数关系能力提升原卷版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
专题2.5 一元二次方程的根与系数关系(能力提升)(原卷版)
一、选择题。
1.(2022•盘龙区一模)关于x的一元二次方程x2+mx﹣1=0的根的情况为( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.不能确定
2.(2022春•定远县校级月考)以和为根的一元二次方程是( )
A.x2﹣10x﹣1=0 B.x2+10x﹣1=0 C.x2+10x+1=0 D.x2﹣10x+1=0
3.(2022•宁波模拟)已知实数a≠b,且满足(a+1)2=3﹣3(a+1),3(b+1)=3﹣(b+1)2,则的值为( )
A.23 B.﹣23 C.﹣2 D.﹣13
4.(2021秋•姜堰区期末)方程x2﹣4x+3=0的两根为x1、x2,则x1+x2等于( )
A.4 B.﹣4 C.3 D.﹣3
5.(2022•运城二模)已知关于x的一元二次方程ax2﹣4x﹣2=0有实数根,则a的取值范围是( )
A.a≥﹣2 B.a>﹣2 C.a≥﹣2且a≠0 D.a>﹣2且a≠0
6.(2021秋•汉阳区期中)设x1,x2是一元二次方程x2+x﹣3=0的两根,则x13﹣4x22+20等于( )
A.1 B.5 C.11 D.13
7.(2021春•岳西县期末)已知关于x的方程x2﹣3x+m=0的一个根是2.则此方程的另一个根为( )
A.0 B.1 C.2 D.3
8.(2021•泰安)已知关于x的一元二次方程kx2﹣(2k﹣1)x+k﹣2=0有两个不相等的实数根,则实数k的取值范围是( )
A.k>﹣ B.k< C.k>﹣且k≠0 D.k<且k≠0
9.(2021秋•新城区期中)关于x的一元二次方程ax2+bx+c=0的两根分别为,,下列判断一定正确的是( )
A.a=﹣1 B.c=1 C.ac=﹣1 D.
10.(2021•商河县校级模拟)已知y=kx+k﹣1的图象如图所示,则关于x的一元二次方程x2﹣x﹣k2﹣k=0的根的情况是( )
A.无实数根
B.有两个相等或不相等的实数根
C.有两个不相等的实数根
D.有两个相等的实数根
二、填空题。
11.(2022•三水区一模)关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根,写出一个满足条件的实数m的值 .(写出一个即可)
12.(2022春•拱墅区校级期中)如果关于x的一元二次方程2x(ax﹣4)﹣x2+6=0没有实数根,那么a的最小整数值是 .
13.(2022•普陀区模拟)已知关于x的一元二次方程(m+2)x2﹣3x+1=0有实数根,则m的取值范围是 .
14.(2021秋•宁远县期中)关于x的方程kx2﹣6x+9=0,k 时,方程有实数根.
15.(2021春•福田区校级期末)关于x的一元二次方程x2﹣10x+m=0的两个实数根分别是x1,x2,且以x1,x2,6为三边的三角形恰好是等腰三角形,则m的值为 .
16.(2021•海安市二模)设α,β是一元二次方程x2+3x﹣7=0的两个根,则α2+5α+2β= .
17.(2022•辉县市一模)已知x1,x2是方程x2+6x+3=0的两实数根,则+的值为 .
18.(2021•海门市模拟)关于x的方程x2+bx+c=0有两个相等的实数根,x取m和m+2时,代数式x2+bx+c的值都等于n,则n= .
三、解答题。
19.(2021春•八步区期中)求证:关于x的方程x2+(2k+1)x+k﹣1=0有两个不相等的实数根.
20.(2021•西湖区校级开学)已知关于x的一元二次方程x2﹣(k+3)x+2k+2=0.
(1)求证:不论k为何值,方程总有两个实数根;
(2)若方程有一个根小于1,求k的取值范围.
21.(2021春•百色期末)关于x的一元二次方程x2﹣3x+k=0有实数根.
(1)求k的取值范围;
(2)若k是符合条件的最大整数,求此时一元二次方程的解.
22.(2021秋•洛宁县期中)关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为△ABC三边的长,若方程有两个相等的实数根.
(1)试判断△ABC的形状,并说明理由.
(2)若a=,b=1,直接写出△ABC的面积是 .
23.(2021•佛山校级二模)小明解关于x的一元二次方程x2+bx+5=0时,在解答过程中写错了常数项,因而得到方程的两个根是4和2.
(1)求b的值;
(2)若菱形的对角线长是关于x的一元二次方程x2+bx+5=0的解,求菱形的面积.
24.(2021秋•井研县期末)已知关于x的方程
(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;
(2)是否存在正数m,使方程的两个实数根的平方和等于224.若存在,求出满足条件的m的值;若不存在,请说明理由.
25.(2021•东莞市模拟)设a、b、c是等腰△ABC的三条边,关于x的方程x2+2x+2c﹣a=0有两个相等的实数根,且a、b为方程x2+mx﹣3m=0的两根,求m的值.
26.(2022春•昆山市校级期末)已知关于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2.
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.
27.(2021•梅州模拟)关于x的方程有两个不相等的实数根.
(1)求m的取值范围;
(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,请说明理由.
28.(2022春•湖南期中)某班“数学兴趣小组”对函数y=|x﹣1|的图象和性质进行了研究.探究过程如下,请补全完整.
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 4 | m | 2 | 1 | 0 | 1 | 2 | 3 | 4 | … |
其中,m= ;
(2)根据上表的数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)进一步探究函数图象发现:
①方程|x﹣1|=0的解是 ;
②方程|x﹣1|=1.5的解是 ;
③关于x的方程|x﹣1|=k有两个实数根,则k的取值范围是 .
相关试卷
这是一份专题2.1 一元二次方程(能力提升)-2022-2023学年九年级数学上册《考点解读•专题训练》(北师大版),文件包含专题21一元二次方程能力提升解析版docx、专题21一元二次方程能力提升原卷版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
这是一份专题21.2 一元二次方程的判别式、根与系数(专项训练)-2022-2023学年九年级数学上册《 考点解读•专题训练》(人教版),共13页。试卷主要包含了关于x的一元二次方程mx2+等内容,欢迎下载使用。
这是一份专题4.3 图形的位似(能力提升)-2022-2023学年九年级数学上册《考点解读•专题训练》(北师大版),文件包含专题43图形的位似能力提升解析版docx、专题43图形的位似能力提升原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。