|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题22.41 二次函数专题-销售与利润问题中考真题专练(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版)
    立即下载
    加入资料篮
    专题22.41 二次函数专题-销售与利润问题中考真题专练(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版)01
    专题22.41 二次函数专题-销售与利润问题中考真题专练(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版)02
    专题22.41 二次函数专题-销售与利润问题中考真题专练(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版)03
    还剩35页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题22.41 二次函数专题-销售与利润问题中考真题专练(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版)

    展开
    这是一份专题22.41 二次函数专题-销售与利润问题中考真题专练(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版),共38页。

    专题22.41 二次函数专题-销售与利润问题中考真题专练
    (专项练习)
    【专题说明】用二次函数解决销售与利润问题是中考的常考点,也是热点,解答这类问题最常用的方法之一是建立二次函数模式,利用二次函数的最大值或最小值。
    运用二次函数的性质求实际问题的最大值和最小值的一般步骤:
    (1) 设自变量x和函数y;
    (2) 求出函数解析式和自变量的取值范围;
    (3) 化为顶点式,求出最值;检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内,并作答。
    相关等量关系:
    (1) 利润=售价一进价;
    (2) 总利润、单件利润、数量的关系;
    (3) 总利润=单件利润×数量。
    1.(2021·辽宁大连·中考真题)某电商销售某种商品一段时间后,发现该商品每天的销售量y(单位:千克)和每千克的售价x(单位:元)满足一次函数关系(如图所示),其中,
    (1)求y关于x的函数解析式;
    (2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?





    2.(2021·江苏泰州·中考真题)农技人员对培育的某一品种桃树进行研究,发现桃子成熟后一棵树上每个桃子质量大致相同.以每棵树上桃子的数量x(个)为横坐标、桃子的平均质量y(克/个)为纵坐标,在平面直角坐标系中描出对应的点,发现这些点大致分布在直线AB附近(如图所示).

    (1)求直线AB的函数关系式;
    (2)市场调研发现:这个品种每个桃子的平均价格w(元)与平均质量y(克/个)满足函数表达式w=y+2.在(1)的情形下,求一棵树上桃子数量为多少时,该树上的桃子销售额最大?



    3.(2021·辽宁丹东·中考真题)某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.
    (1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)
    (2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?
    (3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?



    4.(2021·湖北荆门·中考真题)某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.
    x
    40
    70
    90
    y
    180
    90
    30
    W
    3600
    4500
    2100

    (1)求y关于x的函数解析式(不要求写出自变量的取值范围);
    (2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;
    (3)因疫情期间,该商品进价提高了m(元/件)(),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.



    5.(2021·贵州遵义·中考真题)为增加农民收入,助力乡村振兴.某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8≤x≤40)满足的函数图象如图所示.

    (1)根据图象信息,求y与x的函数关系式;
    (2)求五一期间销售草莓获得的最大利润.

    6.(2021·江苏淮安·中考真题)某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x元,每个月的销售量为y件.
    (1)求y与x的函数表达式;
    (2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?






    7.(2021·辽宁锦州·中考真题)某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m=50+0.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示.

    (1)求y与x之间的函数关系式;
    (2)设销售收入为P(万元),求P与x之间的函数关系式;
    (3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).






    8.(2021·辽宁盘锦·中考真题)某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.设生产并销售B型车床台.
    (1)当时,完成以下两个问题:
    ①请补全下面的表格:

    A型
    B型
    车床数量/台
    ________

    每台车床获利/万元
    10
    ________
    ②若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销售B型车床多少台?
    (2)当0<≤14时,设生产并销售A,B两种型号车床获得的总利润为W万元,如何分配生产并销售A,B两种车床的数量,使获得的总利润W最大?并求出最大利润.


    9.(2021·内蒙古鄂尔多斯·中考真题)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x(元)和游客居住房间数y(间)符合一次函数关系,如图是y关于x的函数图象.
    (1)求y与x之间的函数解析式,并写出自变量x的取值范围;
    (2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?


    10.(2021·辽宁营口·中考真题)某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系,(其中,且x为整数)

    (1)直接写出y与x的函数关系式;
    (2)当售价为多少时,商家所获利润最大,最大利润是多少?




    11.(2021·四川雅安·中考真题)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现销售量y(瓶)与每瓶售价x(元)之间存在一次函数关系(其中,且x为整数),当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶;
    (1)求y与x之间的函数关系式;
    (2)设该药店销售该消毒液每天的销售利润为w元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大.





    12.(2021·辽宁本溪·中考真题)某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个.
    (1)请直接写出y(个)与x(元)之间的函数关系式;
    (2)当销售单价是多少元时,该网店每星期的销售利润是2400元?
    (3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?




    13.(2021·湖北湖北·中考真题)去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售.为此当地政府决定给予其销售的这种消毒液按a元/件进行补贴,设某月销售价为x元/件,a与x之间满足关系式:,下表是某4个月的销售记录.每月销售量(万件)与该月销售价x(元/件)之间成一次函数关系.
    月份

    二月
    三月
    四月
    五月

    销售价x(元件)

    6
    7
    7.6
    8.5

    该月销售量y(万件)

    30
    20
    14
    5


    (1)求y与x的函数关系式;
    (2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?
    (3)当销售价x定为多少时,该月纯收入最大?(纯收入=销售总金额-成本+政府当月补贴)






    14.(2021·山东济宁·中考真题)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.
    (1)求甲、乙两种商品每箱各盈利多少元?
    (2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?





    15.(2021·贵州铜仁·中考真题)某品牌汽车销售店销售某种品牌的汽车,每辆汽车的进价16(万元).当每辆售价为22(万元)时,每月可销售4辆汽车.根据市场行情,现在决定进行降价销售.通过市场调查得到了每辆降价的费用(万元)与月销售量(辆)()满足某种函数关系的五组对应数据如下表:

    4
    5
    6
    7
    8

    0
    0.5
    1
    1.5
    2
    (1)请你根据所给材料和初中所学的函数知识写出与的关系式________;
    (2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y=(每辆原售价--进价)x,请你根据上述条件,求出月销售量为多少时,销售利润最大?最大利润是多少?






    16.(2021·广东深圳·中考真题)某科技公司销售高新科技产品,该产品成本为8万元,销售单价x(万元)与销售量y(件)的关系如下表所示:
    x(万元)
    10
    12
    14
    16
    y(件)
    40
    30
    20
    10
    (1)求y与x的函数关系式;
    (2)当销售单价为多少时,有最大利润,最大利润为多少?



    17.(2021·广东·中考真题)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.
    (1)求猪肉粽和豆沙粽每盒的进价;
    (2)设猪肉粽每盒售价x元表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.



    18.(2021·湖北鄂州·中考真题)为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本(元)与种植面积(亩)之间满足一次函数关系,且当时,;当时,.
    (1)求与之间的函数关系式(不求自变量的取值范围);
    (2)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩种植利润=每亩销售额-每亩种植成本+每亩种植补贴)

    19.(2021·湖北黄冈·中考真题)红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).
    (1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;
    (2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?
    (3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值.






    20.(2021·湖北武汉·中考真题)在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少.生产该产品每盒需要原料和原料,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.
    (1)求每盒产品的成本(成本=原料费+其他成本);
    (2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);
    (3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润.








    21.(2021·湖北十堰·中考真题)某商贸公司购进某种商品的成本为20元/,经过市场调研发现,这种商品在未来40天的销售单价y(元/)与时间x(天)之间的函数关系式为:且x为整数,且日销量与时间x(天)之间的变化规律符合一次函数关系,如下表:
    时间x(天)
    1
    3
    6
    10

    日销量
    142
    138
    132
    124

    填空:
    (1)m与x的函数关系为___________;
    (2)哪一天的销售利润最大?最大日销售利润是多少?
    (3)在实际销售的前20天中,公司决定每销售商品就捐赠n元利润()给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x的增大而增大,求n的取值范围.



    22.(2021·四川达州·中考真题)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.
    (1)写出工厂每天的利润元与降价元之间的函数关系.当降价2元时,工厂每天的利润为多少元?
    (2)当降价多少元时,工厂每天的利润最大,最大为多少元?
    (3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?






    23.(2021·浙江·中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.
    (1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;
    (2)若该景区仅有两个景点,售票处出示的三种购票方式如表所示:
    购票方式



    可游玩景点



    门票价格
    100元/人
    80元/人
    160元/人
    据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.
    ①若丙种门票价格下降10元,求景区六月份的门票总收入;
    ②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?





    24.(2021·四川阿坝·中考真题)某商品的进价为每件40元,在销售过程中发现,每周的销售量y(件)与销售单价x(元)之间的关系可以近似看作一次函数,且当售价定为50元/件时,每周销售30件,当售价定为70元/件时,每周销售10件.
    (1)求k,b的值;
    (2)求销售该商品每周的利润w(元)与销售单价x(元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.





    25.(2021·辽宁鞍山·中考真题)2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件,每销售一件需缴纳网络平台管理费2元,为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x(元),每天的销售量为y(件).
    (1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;
    (2)当销售单价为多少元时,销售这款文化衫每天所获得的利润最大,最大利润为多少元?







    26.(2021·四川南充·中考真题)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.
    (1)求苹果的进价.
    (2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克.写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式.
    (3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完.据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入购进支出)







    27.(2021·四川遂宁·中考真题)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高元.
    (1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?
    (2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?




    28.(2021·江苏扬州·中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:
    甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.
    乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.
    说明:①汽车数量为整数;
    ②月利润=月租车费-月维护费;
    ③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.
    在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:
    (1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;
    (2)求两公司月利润差的最大值;
    (3)甲公司热心公益事业,每租出1辆汽车捐出a元给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.
    参考答案
    1.(1)y关于x的函数解析式为;(2)该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.
    【分析】
    (1)由图象易得和,然后设y关于x的函数解析式为,进而代入求解即可;
    (2)设该电商每天所获利润为w元,由(1)及题意易得,然后根据二次函数的性质可进行求解.
    解:(1)设y关于x的函数解析式为,则由图象可得和,代入得:
    ,解得:,
    ∴y关于x的函数解析式为;
    (2)设该电商每天所获利润为w元,由(1)及题意得:

    ∴-2<0,开口向下,对称轴为,
    ∵,
    ∴当时,w有最大值,即为;
    答:该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.
    【点拨】本题主要考查二次函数的应用,熟练掌握二次函数的应用是解题的关键.
    2.(1);(2)210.
    【分析】
    (1)将,代入到,得到方程组,解得k与b的值,即可求出直线AB的解析式;
    (2)将代入中,得到新的二次函数解析式,再表示出总销售额,配方成顶点式,求出最值即可.
    解:(1)设直线AB的函数关系式为,
    将,代入可得:,
    解得:,
    ∴直线AB的函数关系式.
    故答案为:.
    (2)将代入中,
    可得:,
    化简得:,
    设总销售额为,则




    ∵,
    ∴有最大值,当时,取到最大值,最大值为735.
    故答案为:210.
    【点拨】本题考查了一次函数解析式的求解,二次函数的应用,能理解题意,并表示出其解析式是解题关键.
    3.(1);(2)70元;(3)80元.
    【分析】
    (1)明确题意,找到等量关系求出函数关系式即可;
    (2)根据题意,按照等量关系“销售量(售价成本)”列出方程,求解即可得到该商品此时的销售单价;
    (3)设每月所获利润为,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可.
    解:(1)∵依题意得,
    ∴与的函数关系式为;
    (2)∵依题意得,
    即,
    解得:,,

    ∴当该商品每月销售利润为,为使顾客获得更多实惠,销售单价应定为元;
    (3)设每月总利润为,依题意得

    ∵,此图象开口向下
    ∴当时, 有最大值为:(元),
    ∴当销售单价为元时利润最大,最大利润为元,
    故为了每月所获利润最大,该商品销售单价应定为元.
    【点拨】本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是解题的关键.
    4.(1);(2)售价60元时,周销售利润最大为4800元;(3)
    【分析】
    (1)①依题意设y=kx+b,解方程组即可得到结论;
    (2)根据题意得,再由表格数据求出,得到,根据二次函数的顶点式,求出最值即可;
    (3)根据题意得,由于对称轴是直线,根据二次函数的性质即可得到结论.
    解:(1)设,由题意有
    ,解得,
    所以y关于x的函数解析式为;
    (2)由(1),又由表可得:
    ,,

    所以售价时,周销售利润W最大,最大利润为4800;
    (3)由题意,
    其对称轴,时上述函数单调递增,
    所以只有时周销售利润最大,.

    【点拨】本题考查了二次函数在实际生活中的应用,重点是掌握求最值的问题.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值.
    5.(1);(2)最大利润为3840元
    【分析】
    (1)分为8≤x≤32和32<x≤40求解析式;
    (2)根据“利润=(售价−成本)×销售量”列出利润的表达式,在根据函数的性质求出最大利润.
    解:(1)当8≤x≤32时,设y=kx+b(k≠0),
    则,
    解得:,
    ∴当8≤x≤32时,y=−3x+216,
    当32<x≤40时,y=120,
    ∴;
    (2)设利润为W,则:
    当8≤x≤32时,W=(x−8)y=(x−8)(−3x+216)=−3(x−40)2+3072,
    ∵开口向下,对称轴为直线x=40,
    ∴当8≤x≤32时,W随x的增大而增大,
    ∴x=32时,W最大=2880,
    当32<x≤40时,W=(x−8)y=120(x−8)=120x−960,
    ∵W随x的增大而增大,
    ∴x=40时,W最大=3840,
    ∵3840>2880,
    ∴最大利润为3840元.
    【点拨】点评:本题以利润问题为背景,考查了待定系数法求一次函数的解析式、分段函数的表示、二次函数的性质,本题解题的时候要注意分段函数对应的自变量x的取值范围和函数的增减性,先确定函数的增减性,才能求得利润的最大值.
    6.(1)y=-10x+900;(2)每件销售价为70元时,获得最大利润;最大利润为4000元
    【分析】
    (1)根据等量关系“利润=(售价﹣进价)×销量”列出函数表达式即可.
    (2)根据(1)中列出函数关系式,配方后依据二次函数的性质求得利润最大值.
    解:(1)根据题意,y=300﹣10(x﹣60)=-10x+900,
    ∴y与x的函数表达式为:y=-10x+900;
    (2)设利润为w,由(1)知:w=(x﹣50)(-10x+900)=﹣10x2+1400x﹣45000,
    ∴w=﹣10(x﹣70)2+4000,
    ∴每件销售价为70元时,获得最大利润;最大利润为4000元.
    【点拨】本题考查的是二次函数在实际生活中的应用.此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式.
    7.(1);(2);(3)原料的质量为24吨时,所获销售利润最大,最大销售利润是万元
    【分析】
    (1)利用待定系数法求函数关系式;
    (2)根据销售收入=销售价×销售量列出函数关系式;
    (3)设销售总利润为W,根据销售利润=销售收入﹣原料成本﹣加工费列出函数关系式,然后根据二次函数的性质分析其最值.
    解:(1)设y与x之间的函数关系式为,
    将(20,15),(30,12.5)代入,
    可得:,
    解得:,
    ∴y与x之间的函数关系式为;
    (2)设销售收入为P(万元),
    ∴,
    ∴P与x之间的函数关系式为;
    (3)设销售总利润为W,
    ∴,
    整理,可得:,
    ∵﹣<0,
    ∴当时,W有最大值为,
    ∴原料的质量为24吨时,所获销售利润最大,最大销售利润是万元.
    【点拨】本题考查了二次函数的实际应用,涉及了数形结合的数学思想,熟练掌握待定系数法求解析式是解决本题的关键.
    8.(1)①,;②10台;(2)分配产销A型车床9台、B型车床5台;或产销A型车床8台、B型车床6台,此时可获得总利润最大值170万元
    【分析】
    (1)①由题意可知,生产并销售B型车床x台时,生产A型车床(14-x)台,当时,每台就要比17万元少()万元,所以每台获利,也就是()万元;
    ②根据题意可得根据题意:然后解方程即可;
    (2)当0≤≤4时,W=+=,当4<≤14时,
    W=,分别求出两个范围内的最大值即可得到答案.
    解:(1)当时,每台就要比17万元少()万元
    所以每台获利,也就是()万元
    ①补全表格如下面:

    A型
    B型
    车床数量/台


    每台车床获利/万元
    10

    ②此时,由A型获得的利润是10()万元,
    由B型可获得利润为万元,
    根据题意:, ,
    ,∵0≤≤14, ∴,
    即应产销B型车床10台;
    (2)当0≤≤4时,
    当0≤≤4
    A型
    B型
    车床数量/台


    每台车床获利/万元
    10
    17
    利润


    此时,W=+=,
    该函数值随着的增大而增大,当取最大值4时,W最大1=168(万元);
    当4<≤14时,
    当4<≤14
    A型
    B型
    车床数量/台


    每台车床获利/万元
    10

    利润


    则W=+==,
    当或时(均满足条件4<≤14),W达最大值W最大2=170(万元),
    ∵W最大2> W最大1,
    ∴应分配产销A型车床9台、B型车床5台;或产销A型车床8台、B型车床6台,此时可获得总利润最大值170万元.
    【点拨】本题主要考查了一元二次方程的实际应用,一次函数和二次函数的实际应用,解题的关键在于能够根据题意列出合适的方程或函数关系式求解.
    9.(1)y与x之间的函数解析式为y=-0.1x+68,;(2)当房价定为320元时,宾馆利润最大,最大利润是10800元
    【分析】
    (1)设y与x之间的函数解析式为y=kx+b,根据待定系数法即可得出答案;
    (2)设宾馆每天的利润为W元,利用房间数乘每一间房间的利润即可得到W关于x的函数解析式,配方法再结合增减性即可求得最大值.
    解:(1)根据题意,设y与x之间的函数解析式为y=kx+b,
    图象过(280,40),(290,39),
    ∴,解得:
    ∴y与x之间的函数解析式为y=-0.1x+68,
    ∵每间房价不低于200元且不超过320元

    (2)设宾馆每天的利润为W元,


    当x<350时,w随x的增大而增大,
    ∵,
    ∴当x=320时,W最大=10800
    ∴当房价定为320元时,宾馆利润最大,最大利润是10800元
    【点拨】本题考查的是二次函数在实际生活中的应用及待定系数法求一次函数的解析式,注意利用配方法和函数的增减性求函数的最值,难度不大.
    10.(1);(2)当售价为70元时,商家所获利润最大,最大利润是4500元
    【分析】
    (1)利用待定系数法分段求解函数解析式即可;
    (2)分别求出当时与当时的销售利润解析式,利用二次函数的性质即可求解.
    解:(1)当时,设,
    将和代入,可得
    ,解得,即;
    当时,设,
    将和代入,可得
    ,解得,即;
    ∴;
    (2)当时,
    销售利润,
    当时,销售利润有最大值,为4000元;
    当时,
    销售利润,
    该二次函数开口向上,对称轴为,当时位于对称轴右侧,
    当时,销售利润有最大值,为4500元;
    ∵,
    ∴当售价为70元时,商家所获利润最大,最大利润是4500元.
    【点拨】本题考查一次函数的应用、二次函数的性质,根据图象列出解析式是解题的关键.
    11.(1);(2)当每瓶消毒液售价为20元时,药店销售该消毒液每天销售利润最大,最大为500元.
    【分析】
    (1)设y与x之间的函数关系式,根据题意列出方程组,解方程组即可求解;
    (2)根据题意得出每天的销售利润w元与每瓶售价x(元)之间的二次函数解析式,利用二次函数的性质即可求解.
    解:(1)设y与x之间的函数关系式,由题意可得,

    解得, ,
    ∴y与x之间的函数关系式;
    (2)由题意可得,
    w=(x-10)(-5x+150)=(,且x为整数),
    当时,,
    ∴当每瓶消毒液售价为20元时,药店销售该消毒液每天销售利润最大,最大为500元.
    答:当每瓶消毒液售价为20元时,药店销售该消毒液每天销售利润最大,最大为500元.
    【点拨】本题考查了二次函数的应用,正确求得每天的销售利润w元与每瓶售价x(元)之间的二次函数解析式是解决问题的关键.
    12.(1)y=-2x+220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.
    【分析】
    (1)根据题意中销售量y(个)与售价x(元)之间的关系即可得到结论;
    (2)根据题意列出方程(-2x+220)(x-40)=2400,解方程即可求解;
    (3)设每星期利润为w元,构建二次函数模型,利用二次函数性质即可解决问题.
    解:(1)由题意可得,y=100-2(x-60)=-2x+220;
    (2)由题意可得,
    (-2x+220)(x-40)=2400,
    解得,,,
    ∴当销售单价是70元或80元时,该网店每星期的销售利润是2400元.
    答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元.
    (3)设该网店每星期的销售利润为w元,由题意可得
    w=(-2x+220)(x-40)=,
    当时,w有最大值,最大值为2450,
    ∴当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.
    答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.
    【点拨】本题考查了二次函数的应用,解题的关键是构建二次函数模型,利用二次函数的性质解决最值问题.
    13.(1);(2)4万元;(3)当销售价定为7元/件时,该月纯收入最大.
    【分析】
    (1)利用待定系数法即可得;
    (2)将代入求出的值,代入与的函数关系式求出该月的销售量,再利用乘以该月的销售量即可得;
    (3)设该月纯收入为万元,先根据纯收入的计算公式求出与之间的函数关系式,再利用二次函数的性质求解即可得.
    解:(1)设与的函数关系式为,
    将点代入得:,解得,
    则与的函数关系式为;
    (2)当时,,

    则(万元),
    答:政府该月应付给厂家补贴4万元;
    (3)设该月纯收入为万元,
    由题意得:,
    整理得:,
    由二次函数的性质可知,在内,当时,取得最大值,最大值为32,
    答:当销售价定为7元/件时,该月纯收入最大.
    【点拨】本题考查了一次函数和二次函数的实际应用,正确建立函数关系式是解题关键.
    14.(1)甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)当降价5元时,该商场利润最大,最大利润是2000元.
    【分析】
    (1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意列出方程,解方程即可得出结论;
    (2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,根据题意列出函数解析式,根据二次函数的性质求出函数的最值.
    解:(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意得:

    整理得:x2-18x+45=0,
    解得:x=15或x=3(舍去),
    经检验,x=15是原分式方程的解,符合实际,
    ∴x-5=15-5=10(元),
    答:甲种商品每箱盈利15元,则乙种商品每箱盈利10元;
    (2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,由题意得:
    w=(15-a)(100+20a)=-20a2+200a+1500=-20(a-5)2+2000,
    ∵a=-20,
    当a=5时,函数有最大值,最大值是2000元,
    答:当降价5元时,该商场利润最大,最大利润是2000元.
    【点拨】本题考查了分式方程及二次函数的应用,解题的关键是理解题意,找出等量关系,准确列出分式方程及函数关系式.
    15.(1);(2)月销售量为8辆时,销售利润最大,最大利润是32万元
    【分析】
    (1)观察表格中数据可知,与的关系式为一次函数的关系,设解析式为,再代入数据求解即可;
    (2)根据已知条件“每月销售利润y=(每辆原售价--进价)x”,求出y的表达式,然后再借助二次函数求出其最大利润即可.
    解:(1)由表中数据可知,与的关系式为一次函数的关系,设解析式为,
    代入点(4,0)和点(5,0.5),
    得到,解得,
    故与的关系式为;
    (2)由题意可知:降价后每月销售利润y=(每辆原售价--进价)x,
    即:,其中,
    ∴是的二次函数,且开口向下,其对称轴为,
    ∴当时,有最大值为万元,
    答:月销售量为8辆时,销售利润最大,最大利润是32万元.
    【点拨】本题考查待定系数法求一次函数解析式以及二次函数的应用,读懂题意,根据题中已知条件列出表达式是解决本题的关键.
    16.(1);(2)单价为13元时,利润最大为125万元
    【分析】
    (1)直接利用图表上的点的坐标,利用待定系数法求出一次函数解析式即可;
    (2)设总销售利润为W,则列出W与x的函数关系式,即可得出函数最值.
    解:(1)设y与x的函数关系式为:,
    则,
    解得:,
    故y与x的函数关系式为: ;
    (2)设总销售利润为W,
    则有:,
    当,销售利润万,
    即单价为13万时,最大获利125万元.
    【点拨】本题主要考查待定系数法求一次函数解析式,以及根据二次函数的性质求最值,解题的关键是列出总销售利润与销售单价之间的函数关系.
    17.(1)猪肉粽每盒进价40元,豆沙粽每盒进价30元;(2),最大利润为1750元
    【分析】
    (1)设猪肉粽每盒进价a元,则豆沙粽每盒进价元,根据某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同列方程计算即可;
    (2)根据题意当时,每天可售100盒,猪肉粽每盒售x元时,每天可售盒,列出二次函数关系式,根据二次函数的性质计算最大值即可.
    解:(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价元.

    解得:,经检验是方程的解.
    ∴猪肉粽每盒进价40元,豆沙粽每盒进价30元.
    答:猪肉粽每盒进价40元,豆沙粽每盒进价30元.
    (2)由题意得,当时,每天可售100盒.
    当猪肉粽每盒售x元时,每天可售盒.每盒的利润为()
    ∴,

    配方得:
    当时,y取最大值为1750元.
    ∴,最大利润为1750元.
    答:y关于x的函数解析式为,且最大利润为1750元.
    【点拨】本题主要考查分式方程的实际应用以及二次函数的实际应用,根据题意列出相应的函数解析式是解决本题的关键.
    18.(1);(2)种植面积为240亩时总利润最大,最大利润268800元.
    【分析】
    (1)利用待定系数法求出一次函数解析式即可;
    (2)根据明年销售该作物每亩的销售额能达到2160元,预计明年每亩种粮成本y(元)与种粮面积x(亩)之间的函数关系为,进而得出W与x的函数关系式,再利用二次函数的最值公式求出即可.
    解:(1)设与之间的函数关系式,依题意得:

    解得:,
    ∴与之间的函数关系式为.
    (2)设老张明年种植该作物的总利润为元,依题意得:



    ∵,
    ∴当时,随的增大而增大.
    由题意知:,
    ∴当时,最大,最大值为268800元.
    即种植面积为240亩时总利润最大,最大利润268800元.
    【点拨】此题主要考查了一次函数和二次函数的应用,掌握待定系数法求函数解析式并根据已知得出W与x的函数关系式是求最值问题的关键.
    19.(1);(2)当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)4.
    【分析】
    (1)分和两种情况,根据“月销售单价每涨价1元,月销售量就减少万件”即可得函数关系式,再根据求出的取值范围;
    (2)在(1)的基础上,根据“月利润(月销售单价成本价)月销售量”建立函数关系式,分别利用一次函数和二次函数的性质求解即可得;
    (3)设该产品的捐款当月的月销售利润为万元,先根据捐款当月的月销售单价、月销售最大利润可得,再根据“月利润(月销售单价成本价)月销售量”建立函数关系式,然后利用二次函数的性质即可得.
    解:(1)由题意,当时,,
    当时,,


    解得,
    综上,;
    (2)设该产品的月销售利润为万元,
    ①当时,,
    由一次函数的性质可知,在内,随的增大而增大,
    则当时,取得最大值,最大值为;
    ②当时,,
    由二次函数的性质可知,当时,取得最大值,最大值为90,
    因为,
    所以当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;
    (3)捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元(大于50万元),

    设该产品捐款当月的月销售利润为万元,
    由题意得:,
    整理得:,

    在内,随的增大而增大,
    则当时,取得最大值,最大值为,
    因此有,
    解得.
    【点拨】本题考查了二次函数与一次函数的实际应用,正确建立函数关系式是解题关键.
    20.(1)每盒产品的成本为30元.(2);(3)当时,每天的最大利润为16000元;当时,每天的最大利润为元.
    【分析】
    (1)设原料单价为元,则原料单价为元.然后再根据“用900元收购原料会比用900元收购原料少”列分式方程求解即可;
    (2)直接根据“总利润=单件利润×销售数量”列出解析式即可;
    (3)先确定的对称轴和开口方向,然后再根据二次函数的性质求最值即可.
    解:(1)设原料单价为元,则原料单价为元.
    依题意,得.
    解得,,.
    经检验,是原方程的根.
    ∴每盒产品的成本为:(元).
    答:每盒产品的成本为30元.
    (2)

    (3)∵抛物线的对称轴为=70,开口向下
    ∴当时,a=70时有最大利润,此时w=16000,即每天的最大利润为16000元;
    当时,每天的最大利润为元.
    【点拨】本题主要考查了分式方程的应用、二次函数的应用等知识点,正确理解题意、列出分式方程和函数解析式成为解答本题的关键.
    21.(1);(2)第16天销售利润最大,最大为1568元;(3)1.75<n<4
    【分析】
    (1)设,将,代入,利用待定系数法即可求解;
    (2)分别写出当时与当时的销售利润表达式,利用二次函数和一次函数的性质即可求解;
    (3)写出在前20天中,每天扣除捐赠后的日销售利润表达式,根据二次函数的性质可得对称轴,求解即可.
    解:(1)设,将,代入可得:
    ,解得,
    ∴;
    (2)当时,
    销售利润,
    当时,销售利润最大为1568元;
    当时,
    销售利润,
    当时,销售利润最大为1530元;
    综上所述,第16天销售利润最大,最大为1568元;
    (3)在前20天中,每天扣除捐赠后的日销售利润为:

    对称轴为直线x═16+2n,
    ∵在前20天中,每天扣除捐赠后的日销售利润随时间x的增大而增大,且x只能取整数,故只要第20天的利润高于第19天,
    即对称轴要大于19.5
    ∴16+2n>19.5,
    求得n>1.75,又∵n<4,
    ∴n的取值范围是:1.75<n<4,
    答:n的取值范围是1.75<n<4.
    【点拨】本题考查二次函数与一次函数的实际应用,掌握二次函数与一次函数的性质是解题的关键.
    22.(1),9600;(2)降价4元,最大利润为9800元;(3)43
    【分析】
    (1)若降价元,则每天销量可增加千克,根据利润公式求解并整理即可得到解析式,然后代入求出对应函数值即可;
    (2)将(1)中的解析式整理为顶点式,然后利用二次函数的性质求解即可;
    (3)令可解出对应的的值,然后根据“让利于民”的原则选择合适的的值即可.
    解:(1)若降价元,则每天销量可增加千克,
    ∴,
    整理得:,
    当时,,
    ∴每天的利润为9600元;
    (2),
    ∵,
    ∴当时,取得最大值,最大值为9800,
    ∴降价4元,利润最大,最大利润为9800元;
    (3)令,得:,
    解得:,,
    ∵要让利于民,
    ∴,(元)
    ∴定价为43元.
    【点拨】本题考查二次函数的实际应用,弄清数量关系,准确求出函数解析式并熟练掌握二次函数的性质是解题关键.
    23.(1)20%;(2)①798万元,②当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元
    【分析】
    (1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,则四月份的游客为人,五月份的游客为人,再列方程,解方程可得答案;
    (2)①分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;②设丙种门票价格降低元,景区六月份的门票总收入为万元,再列出与的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案.
    解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,
    由题意,得

    解这个方程,得(舍去)
    答:四月和五月这两个月中,该景区游客人数平均每月增长20%.
    (2)①由题意,丙种门票价格下降10元,得:
    购买丙种门票的人数增加:(万人),
    购买甲种门票的人数为:(万人),
    购买乙种门票的人数为:(万人),
    所以:门票收入问;
    (万元)
    答:景区六月份的门票总收入为798万元.
    ②设丙种门票价格降低元,景区六月份的门票总收入为万元,
    由题意,得

    化简,得,

    ∴当时,取最大值,为817.6万元.
    答:当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元.
    【点拨】本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键.
    24.(1)k=-1,b=80;(2),最大利润为400元.
    【分析】
    (1)将“当售价定为50元/件时,每周销售30件,当售价定为70元/件时,每周销售10件”代入一次函数,即可解答;
    (2)根据利润=销售量×(销售单价-进价),得到,再根据二次函数的性质得到利润最大为400元即可.
    解:(1)由题意可得,当x=50时,y=30;当x=70时,y=10,
    代入中得:
    ,解得:,
    ∴k=-1,b=80;
    (2)由(1)可知,y=-x+80,
    ∴,
    ∵y=-x+80≥0,

    ∵-1<0,
    ∴当x=60时,w有最大值,此时w=400,
    即最大利润为400元.
    【点拨】本题考查了待定系数法求一次函数解析式以及二次函数的实际应用,解题的关键是根据题意列出函数关系式,并熟悉二次函数的性质.
    25.(1);(2)当销售单价为56元时,每天所获得的利润最大,最大利润为1152元
    【分析】
    (1)根据“销售单价每降低1元,则每天可多售出2件”列函数关系式;
    (2)根据总利润=单件利润×销售量列出函数关系式,然后利用二次函数的性质分析其最值.
    解:(1)由题意可得:,
    整理,得:,
    每天的销售量y(件)与销售单价x(元)之间的函数关系式为;
    (2)设销售所得利润为w,由题意可得:

    整理,得:,

    当时,w取最大值为1152,
    当销售单价为56元时,销售这款文化衫每天所获得的利润最大,最大利润为1152元.
    【点拨】此题考查二次函数的应用——销售问题,涉及运算能力及一次函数应用,熟练掌握相关知识是解题的关键.
    26.(1)苹果的进价为10元/千克;(2);(3)要使超市销售苹果利润w最大,一天购进苹果数量为200千克.
    【分析】
    (1)设苹果的进价为x元/千克,根据等量关系,列出分式方程,即可求解;
    (2)分两种情况:当x≤100时, 当x>100时,分别列出函数解析式,即可;
    (3)分两种情况:若x≤100时,若x>100时,分别求出w关于x的函数解析式,根据二次函数的性质,即可求解.
    解:(1)设苹果的进价为x元/千克,
    由题意得:,解得:x=10,
    经检验:x=10是方程的解,且符合题意,
    答:苹果的进价为10元/千克;
    (2)当x≤100时,y=10x,
    当x>100时,y=10×100+(10-2)×(x-100)=8x+200,
    ∴;
    (3)若x≤100时,w=zx-y==,
    ∴当x=100时,w最大=100,
    若x>100时,w=zx-y==,
    ∴当x=200时,w最大=200,
    综上所述:当x=200时,超市销售苹果利润w最大,
    答:要使超市销售苹果利润w最大,一天购进苹果数量为200千克.
    【点拨】本题主要考查分式方程、一次函数、二次函数的实际应用,根据数量关系,列出函数解析式和分式方程,是解题的关键.
    27.(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元
    【分析】
    (1)根据题意,通过列一元二次方程并求解,即可得到答案;
    (2)设利润为M元,结合题意,根据二次函数的性质,计算得利润最大值对应的的值,从而得到答案.
    解:(1)由题意列方程得:(x+40-30) (300-10x)=3360
    解得:x1=2,x2=18
    ∵要尽可能减少库存,
    ∴x2=18不合题意,故舍去
    ∴T恤的销售单价应提高2元;
    (2)设利润为M元,由题意可得:
    M=(x+40-30)(300-10x)=-10x2+200x+3000=
    ∴当x=10时,M最大值=4000元
    ∴销售单价:40+10=50元
    ∴当服装店将销售单价50元时,得到最大利润是4000元.
    【点拨】本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解.
    28.(1)48000,37;(2)33150元;(3)
    【分析】
    (1)用甲公司未租出的汽车数量算出每辆车的租金,再乘以10,减去维护费用可得甲公司的月利润;设每个公司租出的汽车为x辆,根据月利润相等得到方程,解之即可得到结果;
    (2)设两公司的月利润分别为y甲,y乙,月利润差为y,同(1)可得y甲和y乙的表达式,再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况,列出y关于x的表达式,根据二次函数的性质,结合x的范围求出最值,再比较即可;
    (3)根据题意得到利润差为,得到对称轴,再根据两公司租出的汽车均为17辆,结合x为整数可得关于a的不等式,即可求出a的范围.
    解:(1)=48000元,
    当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;
    设每个公司租出的汽车为x辆,
    由题意可得:,
    解得:x=37或x=-1(舍),
    ∴当每个公司租出的汽车为37辆时,两公司的月利润相等;
    (2)设两公司的月利润分别为y甲,y乙,月利润差为y,
    则y甲=,
    y乙=,
    当甲公司的利润大于乙公司时,0<x<37,
    y=y甲-y乙=
    =,
    当x==18时,利润差最大,且为18050元;
    当乙公司的利润大于甲公司时,37<x≤50,
    y=y乙-y甲=
    =,
    ∵对称轴为直线x==18,
    当x=50时,利润差最大,且为33150元;
    综上:两公司月利润差的最大值为33150元;
    (3)∵捐款后甲公司剩余的月利润仍高于乙公司月利润,
    则利润差为=,
    对称轴为直线x=,
    ∵x只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大,
    ∴,解得:.
    【点拨】本题考查了二次函数的实际应用,二次函数的图像和性质,解题时要读懂题意,列出二次函数关系式,尤其(3)中要根据x为整数得到a的不等式.
    相关试卷

    数学人教版22.1.1 二次函数课时训练: 这是一份数学人教版22.1.1 二次函数课时训练,共39页。

    专题22.40 二次函数专题-销售与利润问题(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版): 这是一份专题22.40 二次函数专题-销售与利润问题(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版),共24页。

    专题22.39 二次函数专题-销售与利润问题(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版): 这是一份专题22.39 二次函数专题-销售与利润问题(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版),共20页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题22.41 二次函数专题-销售与利润问题中考真题专练(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map