所属成套资源:人教a版数学选择性必修第三册习题整套
- 专题05 二项式定理- 2022-2023学年高二数学下学期热点题型归纳与变式演练(人教A版2019选择性必修第三册) 试卷 1 次下载
- 专题07 导数证明复习12种归类- 2022-2023学年高二数学下学期热点题型归纳与变式演练(人教A版2019选择性必修第二册) 试卷 2 次下载
- 专题08 条件概率与全概率、贝叶斯公式- 2022-2023学年高二数学下学期热点题型归纳与变式演练(人教A版2019选择性必修第三册) 试卷 1 次下载
- 专题09 三大分布列归类与应用- 2022-2023学年高二数学下学期热点题型归纳与变式演练(人教A版2019选择性必修第三册) 试卷 0 次下载
- 期末测试卷01(数列、导数、排列组合、分布列)- 2022-2023学年高二数学下学期热点题型归纳与变式演练(人教A版2019选择性必修第二、三册) 试卷 1 次下载
专题10 排列组合小题压轴难度归类 - 2022-2023学年高二数学下学期热点题型归纳与变式演练(人教A版2019选择性必修第二、三册)
展开这是一份专题10 排列组合小题压轴难度归类 - 2022-2023学年高二数学下学期热点题型归纳与变式演练(人教A版2019选择性必修第二、三册),文件包含专题10排列组合小题压轴难度归类-2022-2023学年高二数学下学期热点题型归纳与变式演练人教A版2019选择性必修第二三册解析版docx、专题10排列组合小题压轴难度归类-2022-2023学年高二数学下学期热点题型归纳与变式演练人教A版2019选择性必修第二三册原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
一、TOC \ "1-3" \h \u 热点题型归纳 \l "_Tc20668" PAGEREF _Tc20668 1
\l "_Tc9293" 【题型一】多重限制1:相邻与不相邻 PAGEREF _Tc9293 1
\l "_Tc10163" 【题型二】 多重限制2:同“盒子”或“不同盒子” PAGEREF _Tc10163 2
\l "_Tc26918" 【题型三】 多重限制3:数字“奇偶相邻不相邻” PAGEREF _Tc26918 2
\l "_Tc12299" 【题型四】 多重限制4:相同元素(或空车位型) PAGEREF _Tc12299 2
\l "_Tc12048" 【题型五】多重限制5:配对型 PAGEREF _Tc12048 3
\l "_Tc5781" 【题型六】 多重限制6:值班 PAGEREF _Tc5781 3
\l "_Tc21307" 【题型七】 传球与机器人游走 PAGEREF _Tc21307 4
\l "_Tc8409" 【题型八】 “定序”型 PAGEREF _Tc8409 4
\l "_Tc21951" 【题型九】 波浪数型 PAGEREF _Tc21951 4
\l "_Tc9337" 【题型十】 集合子集元素型 PAGEREF _Tc9337 5
\l "_Tc23549" 【题型十一】 走台阶 PAGEREF _Tc23549 5
\l "_Tc18061" 【题型十二】 综合应用 PAGEREF _Tc18061 6
二、最新模考题组练 \l "_Tc7928" PAGEREF _Tc7928 6
【题型一】多重限制1:相邻与不相邻
【例1】已知六人排成一排拍照,其中甲、乙、丙三人两两不相邻,甲、丁两人必须相邻,则满足要求的排队方法数为( )
A.B.C.D.
【例2】《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( )
A.288种B.144种C.720种D.360种
【例3】3位男生和3位女生共6位同学排成一排,若男生甲不站两端,且3位女生中有且仅有两位女生相邻,则不同的排法共有( )种
A.360B.288C.216D.144
【例4】年月日至日,北京师范大学出版集团携手北师大版数学教材编写组在广东省珠海市联合举办了以“新课程,我们都是追梦人”为主题的北师大版中小学数学教材交流研讨会,会议期间举办了一场“互动沙龙”,要求从位男嘉宾,位女嘉宾中随机选出位嘉宾进行现场演讲,且女嘉宾至少要选中位,如果位女嘉宾同时被选中,她们的演讲顺序不能相邻,那么不同演讲顺序的种数是( )
B. C. D.
【题型二】 多重限制2:同“盒子”或“不同盒子”
【例1】将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的种数为 ( )
A.24种 B.30种 C.36种 D.81种
【例2】某单位现需要将“先进个人”,“业务精英”、“道德模范”、“新长征突击手”、“年度优秀员工”5种荣誉分配给3个人,且每个人至少获得一种荣誉,五种荣誉中“道德模范”与“新长征突击手”不能分给同一个人,则不同的分配方法共有( )
A.120种B.150种C.114种D.118种
【例3】将A,B,C,D四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A,B不能放入同一个盒子中,则不同的放法种数为( )
A.15B.30C.20D.42
【例4】将编号为1,2,3,4的四个小球放入A,B,C三个盒子中,若每个盒子至少放一个球,且1号球和2
号球不能放在同一个盒子,则不同的放法种数为
A.30B.24C.48D.72
【题型三】 多重限制3:数字“奇偶相邻不相邻”
【例1】用0、1、2、3、4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间的五位数的个数是( )
A.48 B.36 C.28 D.12
【例2】郑州绿博园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,其中的小李和小王不在一起,则不同的安排方案共有
A.168种B.156种
C.172种D.180种
【例3】若从1,2,3,…,9这9个整数中取出4个不同的数排成一排,依次记为a,b,c,d,则使得a×b×c+d为奇数的不同排列方法有( )
A.1224B.1800C.1560D.840
【题型四】 多重限制4:相同元素(或空车位型)
【例1】已知5辆不同的白颜色和3辆不同的红颜色汽车停成一排,则白颜色汽车至少2辆停在一起且红颜色的汽车互不相邻的停放方法有( )
A.1880B.1440C.720D.256
【例2】现有排成一排的7个不同的盒子,将红、黄、蓝、白颜色的4个小球全部放入这7个盒子中,若每个盒子最多放一个小球,则恰有两个空盒相邻且红球与黄球不相邻的不同放法共有_______种.(结果用数字表示)
【例3】校园某处并排连续有6个停车位,现有3辆汽车需要停放,为了方便司机上下车,规定:当有汽车相邻停放时,车头必须同向;当车没有相邻时,车头朝向不限,则不同的停车方法共有__________种.(用数学作答)
【例4】地面上有并排的七个汽车位,现有红、白、黑三辆不同的汽车同时倒车入库,当停车完毕后,有且仅有两个空车位相邻的情况有________种.
【题型五】多重限制5:配对型
【例1】5双不同号码的鞋,任取4只,恰好取到一双的概率为 .
【例2】将编号为、、、、、的小球放入编号为、、、、、的六个盒子中,每盒放一球,若有且只有两个盒子的编号与放入的小球的编号相同,则不同的放法种数为( )
A.B.C.D.
【例3】从将标号为1,2,3,…,9的9个球放入标号为1,2,3,…,9的9个盒子里,每个盒内只放一个球,恰好3个球的标号与其所在盒子的标号不一致的放入方法种数为( )
A.84B.168C.240D.252
【例4】将编号1,2,3,4的小球放入编号为1,2,3的盒子中,要求不允许有空盒子,且球与盒子的号不能相同,则不同的放球方法有
A.16种B.12种C.9种D.6种
【题型六】 多重限制6:值班
【例1】省中医院5月1号至5月3号拟安排6位医生值班,要求每人值班1天,每天安排2人.若6位医生中的甲不能值2号,乙不能值3号,则不同的安排值班的方法共有__________种.
【例2】某校在一天的节课中安排语文、数学、英语、物理、化学、选修课与节自修课,其中第节只能安排语文、数学、英语三门中的一门,第节只能安排选修课或自修课,且选修课与自修课、自修课与自修课均不能相邻,则所有不同的排法共有__________种.
【例3】现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有不同分法的种数为
A.12B.24C.48D.60
【例4】已知名同学各自在“五一”劳动节三天假期中任选一天参加义务劳动,则在前两天中都有同学参加义务劳动的概率为( )
A.B.C.D.
【题型七】 传球与机器人游走
【例1】设为正六边形,一只青蛙开始在顶点处,它每次可随意地跳到相邻两顶点之一,若在5次之内跳到点,则停止跳动;若5次之内不能到达点,则跳完5次也停止跳动,那么这只青蛙从开始到停止,可能出现的不同跳法共____种。
【例2】某动点在平 面直角坐标系 第一 象限的整点上运动 (含第一象限x轴、y轴上的整点),其运动规律为 m,n→m+1,n+1或m,n→m+1,n-1.若该动点从原点出发,经过 6步运动到点6,2,则有_______中不同的运动轨迹.
【例3】一只蚂蚁从一个正四面体的顶点出发,每次从一个顶点爬行到另一个顶点,则蚂蚁爬行五次还在点的爬行方法种数是__________.
【例4】一只小青蛙位于数轴上的原点处,小青蛙每一次具有只向左或只向右跳动一个单位或者两个单位距离的能力,且每次跳动至少一个单位.若小青蛙经过5次跳动后,停在数轴上实数2位于的点处,则小青蛙不同的跳动方式共有种.
A.105B.95C.85D.75
【题型八】 “定序”型
【例1】“中国梦”的英文翻译为“ ”,其中又可以简写为,从“ ”中取6个不同的字母排成一排,含有“”字母组合(顺序不变)的不同排列共有( )
A.360种B.480种C.600种D.720种
【例2】几只猴子在一棵枯树上玩耍,假设它们均不慎失足下落,已知:(1)甲在下落的过程中依次撞击到树枝A,B,C;(2)乙在下落的过程中依次撞击到树枝D,E,F;(3)丙在下落的过程中依次撞击到树枝G,A,C;(4)丁在下落的过程中依次撞击到树枝B,D,H;(5)戊在下落的过程中依次撞击到树枝I,C,E,则这九棵树枝从高到低不同的顺序共有( )
A.23B.24C.32D.33
【例3】书架上有排好顺序的6本书,如果保持这6本书的相对顺序不变,再放上3本书,则不同的放法共有( ).
A.210种B.252种C.504种D.505种
【例4】从“”(我爱实验)中取6个不同的字母排成一排,含有“”字母组合(顺序不变)的不同排列共有( )
A.360种B.480种C.600种D.720种
【题型九】 波浪数型
【例1】身高从矮到高的甲、乙、丙、丁、戊5人排成高矮相间的一个队形,则甲、丁不相邻的不同的排法种数为( )
A.12 B.14 C.16 D.18
【例2】由1,2,3,4,5组成的没有重复数字的五位数,从中任意抽取一个,则其恰好为“前3个数字保持递减,后3个数字保持递增”(如五位数“43125”,前3个数字“431”保持递减,后3个数字“125”保持递增)的概率是( )
A.B.C.D.
【例3】身高从矮到高的甲、乙、丙、丁、戊5人排成高矮相间的一个队形,则甲、丁不相邻的不同的排法种数为
A.12B.14C.16D.18
【例4】因演出需要,身高互不相等的8名演员要排成一排成一个“波浪形”,即演员们的身高从最左边数起:第一个到第三个依次递增,第三个到第六个依次递减,第六、七、八个依次递增,则不同的排列方式有( )种.
A.181B.109C.84D.96
【题型十】 集合子集元素型
【例1】在集合的子集中选出4个不同的子集,需同时满足以下两个条件:
(1),都要选出;(2)对选出的任意两个子集和,必有或;那么具有_______种不同的选法;
【例2】已知集合,集合是的含有5个元素的子集,若中任意两个元素的和都不等于9,则满足条件的集合共有______个.
【例3】设A是集合的子集,只含有3个元素,且不含相邻的整数,则这种子集A的个数为( )
A.32B.56C.72D.84
【例4】设集合,选择A的两个非空子集B和C,要使C中最小的数大于B中的最大数,则不同的选择方法有________;
【题型十一】 走台阶
【例1】共有10级台阶,某人一步可跨一级台阶,也可跨两级台阶或三级台阶,则他恰好6步上完台阶的方法种数是( )
A.30B.90C.75D.60
【例2】某幢楼房从2楼到3楼共10个台阶,上楼可以一步上1个台阶,也可以一步上2个台阶.若规定从2楼到3楼用8步走完,则上楼的方法有( ).
A.14种B.16种C.21种D.28种
【例3】步中有多少一步上两级是解题关键.通过列方程找到突破口.
4.某人从上一层到二层需跨10级台阶. 他一步可能跨1级台阶,称为一阶步,也可能跨2级台阶,称为二阶步,最多能跨3级台阶,称为三阶步. 从一层上到二层他总共跨了6步,而且任何相邻两步均不同阶. 则他从一层到二层可能的不同过程共有( )种.
A.6B.8C.10D.12【答案】C
【例4】从一楼到二楼共有12级台阶,可以一步迈一级也可以一步迈两级,要求8步从一楼到二楼共有走法.
A.12B.8C.70D.66
【题型十二】 综合应用
【例1】甲、乙、丙、丁、戊五位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆电动车只能载两人,其中孩子们表示都不坐自己妈妈的车,甲的小孩一定要坐戊妈妈的车,则她们坐车不同的搭配方式有
A.种B.种C.种D.种
【例2】北京某大学为第十八届四中全会招募了名志愿者(编号分别是,,,号),现从中任意选取人按编号大小分成两组分配到江西厅、广电厅工作,其中三个编号较小的人在一组,三个编号较大的在另一组,那么确保号、号与号同时入选并被分配到同一厅的选取种数是
A.B.C.D.
【例3】甲、乙两人拿两颗如图所示的正四面体骰子做抛掷游戏,规则如下:由一人同时掷两个骰子,观察底面点数,若两个点数之和为5,则由原掷骰子的人继续掷;若掷出的点数之和不是5,就由对方接着掷.第一次由甲开始掷,设第n次由甲掷的概率为,则的值为( )
A.B.C.D.
【例4】某翻译处有8名翻译,其中有小张等3名英语翻译,小李等3名日语翻译,另外2名既能翻译英语又能翻译日语,现需选取5名翻译参加翻译工作,3名翻译英语,2名翻译日语,且小张与小李恰有1人选中,则有____种不同选取方法.
1.班班会准备从含甲、乙、丙的7名学生中选取4人发言,要求甲、乙两人至少有一个发言,且甲、乙都发言时丙不能发言,则甲、乙两人都发言且发言顺序不相邻的概率为
A.B.C.D.
2.市内某公共汽车站有10个候车位(成一排),现有4名乘客随便坐在某个座位上候车,则恰好有5个连续空座位的候车方式共有________种(用数字作答).
3..将标号为1,2,3,4,5,6的6个小球放入3个不同的盒子中,若每个盒子至少放1个,但其中标号为1,2的小球放入同一个盒子中,则不同的放法共有( )
A.150种B.160种C.240种D.360种
4.将标号为、、、、、的个小球随机地放入标号为、、、、、的个盒子中,每个盒子放一个小球,恰好有个小球的标号与其所在盒子的标号不一致的放法总数有( )
A.种B.种C.种D.种
5.书架上有排好顺序的6本书,如果保持这6本书的相对顺序不变,再放上3本书,则不同的放法共有( ).
A.210种B.252种C.504种D.505种
6.某学校为高一年级排周一上午的课表,共5节课,需排语文、数学、英语、生物、地理各一节,要求语文、英语之间恰排1门其它学科,则不同的排法数是( )
A.18B.26C.36D.48
7.动点M位于数轴上的原点处,M每一次可以沿数轴向左或者向右跳动,每次可跳动1个单位或者2个单位的距离,且每次至少跳动1个单位的距离.经过3次跳动后,M在数轴上可能位置的个数为( )
A.7B.9C.11D.13
8.某单位安排位员工在春节期间大年初一到初七值班,每人值班天,若位员工中的甲、乙排在相邻的两天,丙不排在初一,丁不排在初七,则不同的安排方案共有_______
9.已知集合且,对且含有三个元素,记为中所有元素之和,那么全体的总和等于________.
10.因演出需要,身高互不相等的9名演员要排成一排成一个“波浪形”,即演员们的身高从最左边数起:第一个到第三个依次递增,第三个到第七个依次递减,第七、八、九个依次递增,则不同的排列方式有( )种.
A.379B.360C.243D.217
11.形如这样的数称为“波浪数”,即十位上的数字、千位上的数字均比与它们各自相邻的数字大,现从由组成的数字不重复的五位数中任取一个,则该数是“波浪数”的概率为
A.B.C.D.
12.随着经济的发展,私家车成为居民的标配.某小区为了适应这一变化,在小区建设过程中预留了7个排成一排的备用车位.现有3位私家车车主要使用这一备用车位.现规定3位私家车随机停车,任意两辆车都不相邻,则共有不同停车种数为( )
A.144B.24C.72D.60
13.已知有5个不同的小球,现将这5个球全部放入到标有编号1、2、3、4、5的五个盒子中,若装有小球的盒子的编号之和恰为11,则不同的放球方法种数为( )
A.150B.240C.390D.1440
相关试卷
这是一份专题10-4 排列组合小题归类(理)-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)(解析版),共29页。试卷主要包含了热点题型归纳1,最新模考题组练22等内容,欢迎下载使用。
这是一份专题10-4 排列组合小题归类(理)-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)(解析版),共29页。试卷主要包含了热点题型归纳1,最新模考题组练22等内容,欢迎下载使用。
这是一份专题01 排列组合模型:人坐座位和地图染色- 2022-2023学年高二数学下学期热点题型归纳与变式演练(人教A版2019选择性必修第三册),文件包含专题01排列组合模型人坐座位和地图染色-2022-2023学年高二数学下学期热点题型归纳与变式演练人教A版2019选择性必修第三册解析版docx、专题01排列组合模型人坐座位和地图染色-2022-2023学年高二数学下学期热点题型归纳与变式演练人教A版2019选择性必修第三册原卷版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。