第23章+旋转-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川)
展开第23章 旋转-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川)
一.选择题(共16小题)
1.(2022•内江)如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是( )
A.△ABC绕点C逆时针旋转90°,再向下平移1个单位
B.△ABC绕点C顺时针旋转90°,再向下平移1个单位
C.△ABC绕点C逆时针旋转90°,再向下平移3个单位
D.△ABC绕点C顺时针旋转90°,再向下平移3个单位
2.(2022•内江)2022年2月第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会徽设计的部分图形,其中既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
3.(2022•雅安)在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为( )
A.﹣4 B.4 C.12 D.﹣12
4.(2022•德阳)下列图形中,既是中心对称图形又是轴对称图形的是( )
A. B.
C. D.
5.(2022•南充)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为( )
A.90° B.60° C.45° D.30°
6.(2022•遂宁)下面图形中既是轴对称图形又是中心对称图形的是( )
A.科克曲线 B.笛卡尔心形线
C.阿基米德螺旋线 D.赵爽弦图
7.(2021•攀枝花)如图,在平面直角坐标系中,线段OA与x轴正方向夹角为45°,且OA=2,若将线段OA绕点O沿逆时针方向旋转105°到线段OA′,则此时点A′的坐标为( )
A.(,﹣1) B.(﹣1,) C.(﹣,1) D.(1,﹣)
8.(2021•广元)下列图形均表示医疗或救援的标识,其中既是轴对称图形又是中心对称图形的是( )
A.医疗废物 B.中国红十字会
C.医疗卫生服务机构 D.国际急救
9.(2021•广安)如图,将△ABC绕点A逆时针旋转55°得到△ADE,若∠E=70°且AD⊥BC于点F,则∠BAC的度数为( )
A.65° B.70° C.75° D.80°
10.(2021•遂宁)下列说法正确的是( )
A.角平分线上的点到角两边的距离相等
B.平行四边形既是轴对称图形,又是中心对称图形
C.在代数式,2x,,985,+2b,+y中,,,+2b是分式
D.若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是4
11.(2020•德阳)如图,Rt△ABC中,∠A=30°,∠ABC=90°.将Rt△ABC绕点B逆时针方向旋转得到△A'BC'.此时恰好点C在A'C'上,A'B交AC于点E,则△ABE与△ABC的面积之比为( )
A. B. C. D.
12.(2020•绵阳)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=7,AD=4,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,则AA′=( )
A. B.2 C. D.
13.(2020•内江)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )
A. B.
C. D.
14.(2020•泸州)下列正多边形中,不是中心对称图形的是( )
A. B. C. D.
15.(2020•自贡)下列图形中,是轴对称图形,但不是中心对称图形的是( )
A. B. C. D.
16.(2020•遂宁)下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.等边三角形 B.平行四边形 C.矩形 D.正五边形
二.填空题(共4小题)
17.(2022•泸州)点(﹣2,3)关于原点的对称点的坐标为 .
18.(2021•巴中)如图,把边长为3的正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,DE与BC交于点P,ED的延长线交AB于点Q,交OA的延长线于点M.若BQ:AQ=3:1,则AM= .
19.(2020•广安)在平面直角坐标系中,点A(a,2)与点B(6,b)关于原点对称,则ab= .
20.(2020•眉山)如图,在Rt△ABC中,∠BAC=90°,AB=2.将△ABC绕点A按顺时针方向旋转至
△AB1C1的位置,点B1恰好落在边BC的中点处,则CC1的长为 .
三.解答题(共5小题)
21.(2022•广安)数学活动课上,张老师组织同学们设计多姿多彩的几何图形,如图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.(规定:凡通过旋转能重合的图形视为同一种图形)
22.(2021•绵阳)如图,点M是∠ABC的边BA上的动点,BC=6,连接MC,并将线段MC绕点M逆时针旋转90°得到线段MN.
(1)作MH⊥BC,垂足H在线段BC上,当∠CMH=∠B时,判断点N是否在直线AB上,并说明理由;
(2)若∠ABC=30°,NC∥AB,求以MC、MN为邻边的正方形的面积S.
23.(2021•德阳)如图,点E是矩形ABCD的边BC上一点,将△ABE绕点A逆时针旋转至△AB1E1的位置,此时E、B1、E1三点恰好共线.点M、N分别是AE和AE1的中点,连接MN、NB1.
(1)求证:四边形MEB1N是平行四边形;
(2)延长EE1交AD于点F,若EB1=E1F,,判断△AE1F与△CB1E是否全等,并说明理由.
24.(2021•达州)如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(0,4),B(0,2),C(3,2).
(1)将△ABC以O为旋转中心旋转180°,画出旋转后对应的△A1B1C1;
(2)将△ABC平移后得到△A2B2C2,若点A的对应点A2的坐标为(2,2),求△A1C1C2的面积.
25.(2020•达州)如图,△ABC中,BC=2AB,D、E分别是边BC、AC的中点.将△CDE绕点E旋转180度,得△AFE.
(1)判断四边形ABDF的形状,并证明;
(2)已知AB=3,AD+BF=8,求四边形ABDF的面积S.
第23章 旋转(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(四川)
参考答案与试题解析
一.选择题(共16小题)
1.(2022•内江)如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是( )
A.△ABC绕点C逆时针旋转90°,再向下平移1个单位
B.△ABC绕点C顺时针旋转90°,再向下平移1个单位
C.△ABC绕点C逆时针旋转90°,再向下平移3个单位
D.△ABC绕点C顺时针旋转90°,再向下平移3个单位
【解答】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.
故选:D.
2.(2022•内江)2022年2月第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会徽设计的部分图形,其中既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
【解答】解:根据轴对称图形和中心对称图形的定义可知,C选项既是轴对称图形,又是中心对称图形,
故选:C.
3.(2022•雅安)在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为( )
A.﹣4 B.4 C.12 D.﹣12
【解答】解:∵在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则
∴得a+2=﹣4,﹣b=﹣2,
解得a=﹣6,b=2,
∴ab=﹣12.
故选:D.
4.(2022•德阳)下列图形中,既是中心对称图形又是轴对称图形的是( )
A. B.
C. D.
【解答】解:A.既是中心对称图形,也是轴对称图形,故此选项符合题意;
B.不是中心对称图形,是轴对称图形,故此选项不合题意;
C.不是中心对称图形,是轴对称图形,故此选项不合题意;
D.是中心对称图形,不是轴对称图形,故此选项不合题意;
故选:A.
5.(2022•南充)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为( )
A.90° B.60° C.45° D.30°
【解答】解:∵∠B=30°,∠C=90°,
∴∠CAB=180°﹣∠B﹣∠C=60°,
∵将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,
∴∠C′AB′=∠CAB=60°.
∵点B′恰好落在CA的延长线上,
∴∠BAC′=180°﹣∠CAB﹣∠C′AB′=60°.
故选:B.
6.(2022•遂宁)下面图形中既是轴对称图形又是中心对称图形的是( )
A.科克曲线 B.笛卡尔心形线
C.阿基米德螺旋线 D.赵爽弦图
【解答】解:A.科克曲线既是轴对称图形又是中心对称图形,故本选项符合题意;
B.笛卡尔心形线是轴对称图形,不是中心对称图形,故本选项不符合题意;
C.阿基米德螺旋线不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
D.赵爽弦图不是轴对称图形,是中心对称图形,故本选项不符合题意.
故选:A.
7.(2021•攀枝花)如图,在平面直角坐标系中,线段OA与x轴正方向夹角为45°,且OA=2,若将线段OA绕点O沿逆时针方向旋转105°到线段OA′,则此时点A′的坐标为( )
A.(,﹣1) B.(﹣1,) C.(﹣,1) D.(1,﹣)
【解答】解:如图,过点A′作A′B⊥x轴于点B,
∵将线段OA绕点O沿逆时针方向旋转105°到线段OA′,
∴OA′=OA=2,∠AOA′=105°,
∴∠A′OB=180°﹣45°﹣105°=30°.
在直角△A′OB中,∵∠OBA′=90°,∠A′OB=30°,
∴A′B=OA′=1,OB=A′B=,
∴点A′的坐标为(﹣,1).
故选:C.
8.(2021•广元)下列图形均表示医疗或救援的标识,其中既是轴对称图形又是中心对称图形的是( )
A.医疗废物 B.中国红十字会
C.医疗卫生服务机构 D.国际急救
【解答】解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;
B.是轴对称图形,不是中心对称图形,故此选项不合题意;
C.既是轴对称图形又是中心对称图形,故此选项符合题意;
D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.
故选:C.
9.(2021•广安)如图,将△ABC绕点A逆时针旋转55°得到△ADE,若∠E=70°且AD⊥BC于点F,则∠BAC的度数为( )
A.65° B.70° C.75° D.80°
【解答】解:∵将△ABC绕点A逆时针旋转55°得△ADE,
∴∠BAD=55°,∠E=∠ACB=70°,
∵AD⊥BC,
∴∠DAC=20°,
∴∠BAC=∠BAD+∠DAC=75°.
故选:C.
10.(2021•遂宁)下列说法正确的是( )
A.角平分线上的点到角两边的距离相等
B.平行四边形既是轴对称图形,又是中心对称图形
C.在代数式,2x,,985,+2b,+y中,,,+2b是分式
D.若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是4
【解答】解:A、根据角平分线性质可得:角平分线上的点到角两边的距离相等,故正确,符合题意.
B、平行四边形不是轴对称图形,但是中心对称图形,故错误,不符合题意.
C、代数式,2x,,985,+2b,+y中,,+2b是分式,故错误,不符合题意.
D、一组数据2、3、x、1、5的平均数是3,则x=4,这组数据的中位数是3,故错误,不符合题意.
故选:A.
11.(2020•德阳)如图,Rt△ABC中,∠A=30°,∠ABC=90°.将Rt△ABC绕点B逆时针方向旋转得到△A'BC'.此时恰好点C在A'C'上,A'B交AC于点E,则△ABE与△ABC的面积之比为( )
A. B. C. D.
【解答】解:∵∠A=30°,∠ABC=90°,
∴∠ACB=60°,
∵将Rt△ABC绕点B逆时针方向旋转得到△A'BC',
∴BC=BC',∠ACB=∠A'C'B=60°,
∴△BCC'是等边三角形,
∴∠CBC'=60°,
∴∠ABA'=60°,
∴∠BEA=90°,
设CE=a,则BE=a,AE=3a,
∴,
∴,
∴△ABE与△ABC的面积之比为.
故选:D.
12.(2020•绵阳)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=7,AD=4,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,则AA′=( )
A. B.2 C. D.
【解答】解:过D作DE⊥BC于E,
则BE=AD=4,DE=7,
设B′C=BC=x,
则DC=x,
∴DC2=DE2+EC2,即2x2=49+(x﹣4)2,
解得:x=5(负值舍去),
∴BC=5,AC=,
在AB上取一点F,使得BF=BC=5,连接DF,
则△DFC∽△CB′B,且相似比为:1,
∴AF=7﹣5=2,
∵AD=4,
∴DF=2,
∴BB′==,
∵将△ABC绕点C顺时针方向旋转后得△A′B′C,
∴∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,
∴△A′CA∽△B′CB,
∴=,
∴AA′=×=,
故选:A.
13.(2020•内江)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )
A. B.
C. D.
【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;
B、是轴对称图形,不是中心对称图形,故本选项不合题意;
C、是中心对称图形,故本选项符合题意;
D、既不是轴对称图形,也不是中心对称图形,故本选项不合题意.
故选:C.
14.(2020•泸州)下列正多边形中,不是中心对称图形的是( )
A. B. C. D.
【解答】解:A.正方形是中心对称图形,故本选项不合题意;
B.正五边形不是中心对称图形,故本选项符合题意;
C.正六边形是中心对称图形,故本选项不合题意;
D.正八边形是中心对称图形,故本选项不合题意;
故选:B.
15.(2020•自贡)下列图形中,是轴对称图形,但不是中心对称图形的是( )
A. B. C. D.
【解答】解:A、是轴对称图形,不是中心对称图形,故本选项符合题意;
B、不是轴对称图形,是中心对称图形,故本选项不合题意;
C、既是轴对称图形,又是中心对称图形,故本选项不合题意;
D、既不是轴对称图形,又不是中心对称图形,故本选项不合题意.
故选:A.
16.(2020•遂宁)下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.等边三角形 B.平行四边形 C.矩形 D.正五边形
【解答】解:A、等边三角形是轴对称图形,不是中心对称图形.故本选项不合题意;
B、平行四边形是中心对称图形,不是轴对称图形.故本选项不合题意;
C、矩形既是轴对称图形,又是中心对称图形.故本选项符合题意;
D、正五边形是轴对称图形,不是中心对称图形.故本选项不合题意.
故选:C.
二.填空题(共4小题)
17.(2022•泸州)点(﹣2,3)关于原点的对称点的坐标为 (2,﹣3) .
【解答】解:∵点M(﹣2,3)关于原点对称,
∴点M(﹣2,3)关于原点对称的点的坐标为(2,﹣3).
故答案为(2,﹣3).
18.(2021•巴中)如图,把边长为3的正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,DE与BC交于点P,ED的延长线交AB于点Q,交OA的延长线于点M.若BQ:AQ=3:1,则AM= .
【解答】解:方法一,∵BQ:AQ=3:1,
∴,
∵把边长为3的正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,
∴OD=AB=OA=3,∠ODE=∠OAB=90°,
∴∠ODM=∠QAM=90°,
又∵∠M=∠M,
∴△ODM∽△QAM,
∴=,
设AM=x,则DM=4x,OM=3+x,
在Rt△ODM中,由勾股定理得:
OD2+DM2=OM2,
即32+(4x)2=(3+x)2,
解得:x=或0(舍去),
∴AM=,
故答案为:.
方法二,连接OQ,OP,
∵将正方形OABC绕点O逆时针旋转n°(0<n<90)得到正方形ODEF,
∴OA=OD,∠OAQ=∠ODQ=90°,
在Rt△OAQ和Rt△ODQ中,
,
∴Rt△OAQ≌Rt△ODQ(HL),
∴QA=DQ,
同理可证:CP=DP,
∵BQ:AQ=3:1,AB=3,
∴BQ=,AQ=,
设CP=x,则BP=3﹣x,PQ=x+,
在Rt△BPQ中,由勾股定理得:
(3﹣x)2+()2=(x+)2,
解得x=,
∴BP=,
∵∠AQM=∠BQP,∠BAM=∠B,
∴△AQM∽△BQP,
∴,
∴,
∴AM=.
故答案为:.
19.(2020•广安)在平面直角坐标系中,点A(a,2)与点B(6,b)关于原点对称,则ab= 12 .
【解答】解:∵点A(a,2)与点B(6,b)关于原点对称,
∴a=﹣6,b=﹣2,
∴ab=12,
故答案为:12.
20.(2020•眉山)如图,在Rt△ABC中,∠BAC=90°,AB=2.将△ABC绕点A按顺时针方向旋转至
△AB1C1的位置,点B1恰好落在边BC的中点处,则CC1的长为 2 .
【解答】解:∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,
∴AB1=BC,BB1=B1C,AB=AB1,
∴BB1=AB=AB1,
∴△ABB1是等边三角形,
∴∠BAB1=∠B=60°,
∴∠CAC1=60°,
∵将△ABC绕点A按顺时针方向旋转至△AB1C1的位置,
∴CA=C1A,
∴△AC1C是等边三角形,
∴CC1=CA,
∵AB=2,
∴CA=2,
∴CC1=2.
故答案为:2.
三.解答题(共5小题)
21.(2022•广安)数学活动课上,张老师组织同学们设计多姿多彩的几何图形,如图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.(规定:凡通过旋转能重合的图形视为同一种图形)
【解答】解:图形如图所示:
22.(2021•绵阳)如图,点M是∠ABC的边BA上的动点,BC=6,连接MC,并将线段MC绕点M逆时针旋转90°得到线段MN.
(1)作MH⊥BC,垂足H在线段BC上,当∠CMH=∠B时,判断点N是否在直线AB上,并说明理由;
(2)若∠ABC=30°,NC∥AB,求以MC、MN为邻边的正方形的面积S.
【解答】解:(1)结论:点N在直线AB上,理由如下:
∵∠CMH=∠B,∠CMH+∠C=90°,
∴∠B+∠C=90°,
∴∠BMC=90°,即CM⊥AB,
∴线段CM逆时针旋转90°落在直线BA上,
即点N在直线AB上,
(2)作CD⊥AB于点D,
∵MC=MN,∠CMN=90°,
∴∠MCN=45°,
∵NC∥AB,
∴∠BMC=45°,
∵BC=6,∠B=30°,
∴CD=3,MC=,
∴S=MC2=18,即以MC.MN为邻边的正方形面积为S=18.
23.(2021•德阳)如图,点E是矩形ABCD的边BC上一点,将△ABE绕点A逆时针旋转至△AB1E1的位置,此时E、B1、E1三点恰好共线.点M、N分别是AE和AE1的中点,连接MN、NB1.
(1)求证:四边形MEB1N是平行四边形;
(2)延长EE1交AD于点F,若EB1=E1F,,判断△AE1F与△CB1E是否全等,并说明理由.
【解答】解:(1)证明:∵四边形ABCD是矩形,
∴∠B=90°,
∵△AB1E1是△ABE旋转所得的,
∴AE=AE1,∠AB1E1=∠AB1E=∠B=90°,
∴B1是EE1的中点,
∴EB1=EE1,
∵M、N分别是AE和AE1的中点,
∴MN∥EB1,MN=EE1,
∴EB1=MN,
∴四边形MEB1N为平行四边形,
(2)△AE1F≌△CB1E,
证明:连接FC,
∵EB1=B1E1=E1F,
∴=,
同理,S=S△FEC,
∵=,
∴S△EAF=S△FEC,
∵AF∥EC,
∴△AEF底边AF上的高和△FEC底边上的高相等.
∴AF=EC.
∵AF∥EC,
∴∠AFE=∠FEC,
在△AE1F和△CB1E中,
,
∴△AE1F≌△CB1E(SAS).
24.(2021•达州)如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(0,4),B(0,2),C(3,2).
(1)将△ABC以O为旋转中心旋转180°,画出旋转后对应的△A1B1C1;
(2)将△ABC平移后得到△A2B2C2,若点A的对应点A2的坐标为(2,2),求△A1C1C2的面积.
【解答】解:(1)如图,△A1B1C1即为所求.
(2)如图,△A2B2C2即为所求.△A1C1C2的面积=4×8﹣×3×2﹣×2×8﹣×4×5=11.
25.(2020•达州)如图,△ABC中,BC=2AB,D、E分别是边BC、AC的中点.将△CDE绕点E旋转180度,得△AFE.
(1)判断四边形ABDF的形状,并证明;
(2)已知AB=3,AD+BF=8,求四边形ABDF的面积S.
【解答】解:(1)结论:四边形ABDF是菱形.
∵CD=DB,CE=EA,
∴DE∥AB,AB=2DE,
由旋转的性质可知,DE=EF,
∴AB=DF,AB∥DF,
∴四边形ABDF是平行四边形,
∵BC=2AB,BD=DC,
∴BA=BD,
∴平行四边形ABDF是菱形.
(2)连接BF,AD交于点O.
∵四边形ABDF是菱形,
∴AD⊥BF,OB=OF,AO=OD,设OA=x,OB=y,
则有,
∴x+y=4,
∴x2+2xy+y2=16,
∴2xy=7,
∴S菱形ABDF=×BF×AD=2xy=7.
第23章旋转-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州): 这是一份第23章旋转-【人教版-中考真题】九年级数学上学期期末复习培优练习(贵州),共13页。
第23章旋转-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江): 这是一份第23章旋转-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江),共22页。
第23章旋转-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西): 这是一份第23章旋转-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共18页。