终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    云南省3年(2020-2022)中考数学真题汇编-第21-29章【人教版九年级】

    立即下载
    加入资料篮
    云南省3年(2020-2022)中考数学真题汇编-第21-29章【人教版九年级】第1页
    云南省3年(2020-2022)中考数学真题汇编-第21-29章【人教版九年级】第2页
    云南省3年(2020-2022)中考数学真题汇编-第21-29章【人教版九年级】第3页
    还剩20页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    云南省3年(2020-2022)中考数学真题汇编-第21-29章【人教版九年级】

    展开

    这是一份云南省3年(2020-2022)中考数学真题汇编-第21-29章【人教版九年级】,共23页。试卷主要包含了的横坐标,m=,,且与x轴交于A、B两点等内容,欢迎下载使用。
    九年级数学上学期期末复习培优综合练习 -人教版九年级中考数学真题汇编(云南省)
    一.解一元二次方程-因式分解法(共1小题)
    1.(2022•云南)方程2x2+1=3x的解为    .
    二.根的判别式(共2小题)
    2.(2021•云南)若一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是(  )
    A.a<1 B.a≤1 C.a≤1且a≠0 D.a<1且a≠0
    3.(2020•云南)若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为   .
    三.待定系数法求二次函数解析式(共1小题)
    4.(2020•昆明)如图,两条抛物线y1=﹣x2+4,y2=﹣x2+bx+c相交于A,B两点,点A在x轴负半轴上,且为抛物线y2的最高点.
    (1)求抛物线y2的解析式和点B的坐标;
    (2)点C是抛物线y1上A,B之间的一点,过点C作x轴的垂线交y2于点D,当线段CD取最大值时,求S△BCD.

    四.抛物线与x轴的交点(共1小题)
    5.(2021•云南)已知抛物线y=﹣2x2+bx+c经过点(0,﹣2),当x<﹣4时,y随x的增大而增大,当x>﹣4时,y随x的增大而减小.设r是抛物线y=﹣2x2+bx+c与x轴的交点(交点也称公共点)的横坐标,m=.
    (1)求b、c的值;
    (2)求证:r4﹣2r2+1=60r2;
    (3)以下结论:m<1,m=1,m>1,你认为哪个正确?请证明你认为正确的那个结论.
    五.图象法求一元二次方程的近似根(共1小题)
    6.(2020•昆明)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是(  )

    A.ab<0
    B.一元二次方程ax2+bx+c=0的正实数根在2和3之间
    C.a=
    D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>时,y1<y2
    六.二次函数综合题(共2小题)
    7.(2022•云南)已知抛物线y=﹣x2﹣x+c经过点(0,2),且与x轴交于A、B两点.设k是抛物线y=﹣x2﹣x+c与x轴交点的横坐标,M是抛物线y=﹣x2﹣x+c上的点,常数m>0,S为△ABM的面积.已知使S=m成立的点M恰好有三个,设T为这三个点的纵坐标的和.
    (1)求c的值;
    (2)直接写出T的值;
    (3)求的值.
    8.(2020•云南)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.
    (1)求b、c的值;
    (2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F的坐标;
    (3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.
    七.三角形的外接圆与外心(共1小题)
    9.(2021•云南)如图,等边△ABC的三个顶点都在⊙O上,AD是⊙O的直径.若OA=3,则劣弧BD的长是(  )

    A. B.π C. D.2π
    八.切线的判定与性质(共1小题)
    10.(2021•云南)如图,AB是⊙O的直径,点C是⊙O上异于A、B的点,连接AC、BC,点D在BA的延长线上,且∠DCA=∠ABC,点E在DC的延长线上,且BE⊥DC.
    (1)求证:DC是⊙O的切线;
    (2)若=,BE=3,求DA的长.

    九.圆锥的计算(共2小题)
    11.(2020•云南)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是(  )

    A. B.1 C. D.
    12.(2022•云南)某中学开展劳动实习,学生到教具加工厂制作圆锥.他们制作的圆锥,母线长为30cm,底面圆的半径为10cm,这种圆锥的侧面展开图的圆心角度数是    .
    一十.关于原点对称的点的坐标(共1小题)
    13.(2022•云南)点A(1,﹣5)关于原点的对称点为点B,则点B的坐标为    .
    一十一.概率的意义(共1小题)
    14.(2020•云南)下列说法正确的是(  )
    A.为了解三名学生的视力情况,采用抽样调查
    B.任意画一个三角形,其内角和是360°是必然事件
    C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定
    D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖
    一十二.列表法与树状图法(共3小题)
    15.(2022•云南)某班甲、乙两名同学被推荐到学校艺术节上表演节目,计划用葫芦丝合奏一首乐曲.要合奏的乐曲是用游戏的方式在《月光下的凤尾竹》与《彩云之南》中确定一首.
    游戏规则如下,在一个不透明的口袋中装有分别标有数字1,2,3,4的四个小球(除标号外,其余都相同),甲从口袋中任意摸出1个小球,小球上的数字记为a.在另一个不透明的口袋中装有分别标有数字1,2的两张卡片(除标号外,其余都相同),乙从口袋里任意摸出1张卡片,卡片上的数字记为b.然后计算这两个数的和,即a+b.若a+b为奇数,则演奏《月光下的凤尾竹》;否则,演奏《彩云之南》.
    (1)用列表法或画树状图法中的一种方法,求(a,b)所有可能出现的结果总数;
    (2)你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,哪一首乐曲更可能被选中?
    16.(2021•云南)为庆祝中国共产党成立100周年,某市组织该市七、八两个年级学生参加演讲比赛,演讲比赛的主题为“追忆百年历程,凝聚青春力量”.该市一中学经过初选,在七年级选出3名同学,其中2名女生,分别记为x1、x2,1名男生,记为y1;在八年级选出3名同学,其中1名女生,记为x3,2名男生,分别记为y2、y3.现分别从两个年级初选出的同学中,每个年级随机选出一名同学组成代表队参加比赛.
    (1)用列表法或树状图法(树状图也称树形图)中的一种方法,求所有可能出现的代表队总数;
    (2)求选出的代表队中的两名同学恰好是一名男生和一名女生的概率P.
    17.(2020•云南)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.
    (1)直接写出甲家庭选择到大理旅游的概率;
    (2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.
    一十三.游戏公平性(共1小题)
    18.(2020•昆明)有一个可自由转动的转盘,被分成了三个大小相同的扇形,分别标有数字2,4,6;另有一个不透明的瓶子,装有分别标有数字1,3,5的三个完全相同的小球.小杰先转动一次转盘,停止后记下指针指向的数字(若指针指在分界线上则重转),小玉再从瓶子中随机取出一个小球,记下小球上的数字.
    (1)请用列表或画树状图的方法(选其中一种)表示出所有可能出现的结果;
    (2)若得到的两数字之和是3的倍数,则小杰赢;若得到的两数字之和是7的倍数,则小玉赢,此游戏公平吗?为什么?


    九年级数学上学期期末复习培优综合练习 -人教版九年级中考数学真题汇编(云南省)
    参考答案与试题解析
    一.解一元二次方程-因式分解法(共1小题)
    1.(2022•云南)方程2x2+1=3x的解为  x1=1,x2= .
    【解答】解:2x2+1=3x,
    2x2﹣3x+1=0,
    (x﹣1)(2x﹣1)=0,
    解得:x1=1,x2=.
    故答案为:x1=1,x2=.
    【点评】本题考查了解一元二次方程﹣因式分解法:掌握十字相乘法解方程是本题的关键.
    二.根的判别式(共2小题)
    2.(2021•云南)若一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是(  )
    A.a<1 B.a≤1 C.a≤1且a≠0 D.a<1且a≠0
    【解答】解:∵一元二次方程ax2+2x+1=0有两个不相等的实数根,
    ∴a≠0,Δ=b2﹣4ac=22﹣4×a×1=4﹣4a>0,
    解得:a<1且a≠0,
    故选:D.
    【点评】此题考查了一元二次方程判别式的知识.此题比较简单,注意掌握一元二次方程有两个不相等的实数根,即可得Δ>0.
    3.(2020•云南)若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为 1 .
    【解答】解:∵关于x的一元二次方程x2+2x+c=0有两个相等的实数根,
    ∴Δ=b2﹣4ac=22﹣4c=0,
    解得c=1.
    故答案为1.
    【点评】此题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.
    三.待定系数法求二次函数解析式(共1小题)
    4.(2020•昆明)如图,两条抛物线y1=﹣x2+4,y2=﹣x2+bx+c相交于A,B两点,点A在x轴负半轴上,且为抛物线y2的最高点.
    (1)求抛物线y2的解析式和点B的坐标;
    (2)点C是抛物线y1上A,B之间的一点,过点C作x轴的垂线交y2于点D,当线段CD取最大值时,求S△BCD.

    【解答】解:(1)当y1=0时,即﹣x2+4=0,解得x=2或x=﹣2,
    又点A在x轴的负半轴,
    ∴点A(﹣2,0),
    ∵点A(﹣2,0),是抛物线y2的最高点.
    ∴﹣=﹣2,即b=﹣,
    把A(﹣2,0)代入y2=﹣x2﹣x+c得,c=﹣,
    ∴抛物线y2的解析式为:y2=﹣x2﹣x﹣;
    由得,,,
    ∵A(﹣2,0),
    ∴点B(3,﹣5),
    答:抛物线y2的解析式为:y2=﹣x2﹣x﹣,点B(3,﹣5);
    (2)由题意得,CD=y1﹣y2=﹣x2+4﹣(﹣x2﹣x﹣),
    即:CD=﹣x2+x+,
    当x=﹣=时,CD最大=﹣×+×+=5,
    ∴S△BCD=×5×(3﹣)=.
    【点评】本题考查二次函数的图象和性质,把点的坐标代入求函数关系式,用两个函数关系式组成方程组求交点坐标是常用的方法.
    四.抛物线与x轴的交点(共1小题)
    5.(2021•云南)已知抛物线y=﹣2x2+bx+c经过点(0,﹣2),当x<﹣4时,y随x的增大而增大,当x>﹣4时,y随x的增大而减小.设r是抛物线y=﹣2x2+bx+c与x轴的交点(交点也称公共点)的横坐标,m=.
    (1)求b、c的值;
    (2)求证:r4﹣2r2+1=60r2;
    (3)以下结论:m<1,m=1,m>1,你认为哪个正确?请证明你认为正确的那个结论.
    【解答】(1)解:∵y=﹣2x2+bx+c经过点(0,﹣2),当x<﹣4时,y随x的增大而增大,当x>﹣4时,y随x的增大而减小,即对称轴为直线x=﹣4,
    ∴,解得;
    (2)证明:由题意,抛物线的解析式为y=﹣2x2﹣16x﹣2,
    ∵r是抛物线y=﹣2x2﹣16x﹣2与x轴的交点的横坐标,
    ∴2r2+16r+2=0,
    ∴r2+8r+1=0,
    ∴r2+1=﹣8r
    ∴(r2+1)2=(﹣8r)2,
    ∴r4+2r2+1=64r2,
    ∴r4﹣2r2+1=60r2;
    (3)m>1正确,理由如下:
    由(2)知:r4﹣2r2+1=60r2;
    ∴r4﹣62r2+1=0,
    ∴r7﹣62r5+r3=0,
    而m﹣1=﹣1


    =,
    由(2)知:r2+8r+1=0,
    ∴8r=﹣r2﹣1,
    ∵﹣r2﹣1<0,
    ∴8r<0,即r<0,
    ∴r9+60r5﹣1<0,
    ∴>0,
    即m﹣1>0,
    ∴m>1.
    【点评】本题考查二次函数综合知识,涉及二次函数图象上的点坐标、对称轴、增减性、与x轴交点坐标等知识,解题的关键是用比差法时,判断r和r9+60r5﹣1的符号.
    五.图象法求一元二次方程的近似根(共1小题)
    6.(2020•昆明)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是(  )

    A.ab<0
    B.一元二次方程ax2+bx+c=0的正实数根在2和3之间
    C.a=
    D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>时,y1<y2
    【解答】解:∵抛物线开口向上,
    ∴a>0,
    ∵抛物线的对称轴为直线x=﹣=1,
    ∴b=﹣2a<0,
    ∴ab<0,所以A选项的结论正确;
    ∵抛物线的对称轴为直线x=1,抛物线与x轴的一个交点坐标在(0,0)与(﹣1,0)之间,
    ∴抛物线与x轴的另一个交点坐标在(2,0)与(3,0)之间,
    ∴一元二次方程ax2+bx+c=0的正实数根在2和3之间,所以B选项的结论正确;
    把B(0,﹣2),A(﹣1,m)代入抛物线得c=﹣2,a﹣b+c=m,
    而b=﹣2a,
    ∴a+2a﹣2=m,
    ∴a=,所以C选项的结论正确;
    ∵点P1(t,y1),P2(t+1,y2)在抛物线上,
    ∴当点P1、P2都在直线x=1的右侧时,y1<y2,此时t≥1;
    当点P1在直线x=1的左侧,点P2在直线x=1的右侧时,y1<y2,此时0<t<1且t+1﹣1>1﹣t,即<t<1,
    ∴当<t<1或t≥1时,y1<y2,所以D选项的结论错误.
    故选:D.
    【点评】本题考查了图象法求一元二次方程的近似根:利用二次函数图象的对称性确定抛物线与x轴的交点坐标,从而得到一元二次方程的根.也考查了二次函数的性质.
    六.二次函数综合题(共2小题)
    7.(2022•云南)已知抛物线y=﹣x2﹣x+c经过点(0,2),且与x轴交于A、B两点.设k是抛物线y=﹣x2﹣x+c与x轴交点的横坐标,M是抛物线y=﹣x2﹣x+c上的点,常数m>0,S为△ABM的面积.已知使S=m成立的点M恰好有三个,设T为这三个点的纵坐标的和.
    (1)求c的值;
    (2)直接写出T的值;
    (3)求的值.
    【解答】解:(1)把点(0,2)代入抛物线y=﹣x2﹣x+c中得:c=2;
    (2)由(1)知:y=﹣x2﹣x+2=﹣(x+)2+,
    ∴顶点的坐标为(﹣,),
    ∵使S=m成立的点M恰好有三个,常数m>0,S为△ABM的面积,
    ∴其中一个点M就是抛物线的顶点,
    ∴T=﹣×2+=﹣;
    (3)解法一:当y=0时,﹣x2﹣x+2=0,
    x2+x﹣2=0,
    ∴x+﹣=0,
    x﹣=﹣,
    ∴(x﹣)2=3,
    ∴x2+=7,
    ∴k2+=7,
    ∴(k2+)2=49,
    ∴k4+=41,




    =.
    解法二:当y=0时,﹣x2﹣x+2=0,
    x2+x﹣2=0,
    ∵k是抛物线y=﹣x2﹣x+c与x轴交点的横坐标,即x=k是x2+x﹣2=0的解,
    ∴k2+k﹣2=0,
    ∴k2=2﹣k,
    ∴k4=(2﹣k)2=4﹣4k+3k2=4﹣4k+3(2﹣k)=10﹣7k,
    ∵k8+k6+2k4+4k2+16
    =(10﹣7k)2+(2﹣k)(10﹣7k)+2(10﹣7k)+4(2﹣k)+16
    =100﹣140k+147k2+20﹣24k+21k2+20﹣14k+8﹣4k+16
    =164﹣182k+168(2﹣k)
    =500﹣350k,


    =.
    【点评】本题是二次函数的综合题,考查了二次函数的性质,配方法,抛物线与x轴的交点,抛物线与一元二次方程的关系,学会待定系数法求函数解析式,第三问解题的关键是直接利用分式的基本性质和完全平方公式,属于中考压轴题.
    8.(2020•云南)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.
    (1)求b、c的值;
    (2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F的坐标;
    (3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.
    【解答】解:(1)把A、C点的坐标代入抛物线的解析式得,

    解得,;
    (2)直线BC与抛物线的对称轴交于点F,连接AF,如图1,
    此时,AF+CF=BF+CF=BC的值最小,
    ∵AC为定值,
    ∴此时△AFC的周长最小,
    由(1)知,b=﹣2,c=﹣3,
    ∴抛物线的解析式为:y=x2﹣2x﹣3,
    ∴对称轴为直线x=1,
    令y=0,得y=x2﹣2x﹣3=0,
    解得,x=﹣1,或x=3,
    ∴B(3,0),
    ∵C(0,﹣3),
    设直线BC的解析式为:y=kx+b(k≠0),得

    解得,,
    ∴直线BC的解析式为:y=x﹣3,
    当x=1时,y=x﹣3=﹣2,
    ∴F(1,﹣2);

    (3)设P(m,m2﹣2m﹣3)(m>3),过P作PH⊥BC于H,过D作DG⊥BC于G,如图2,
    则PH=5DG,E(m,m﹣3),
    ∴PE=m2﹣3m,DE=m﹣3,
    ∵∠PHE=∠DGE=90°,∠PEH=∠DEG,
    ∴△PEH∽△DEG,
    ∴,
    ∴,
    ∵m=3(舍),或m=5,
    ∴点P的坐标为P(5,12).
    故存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍,其P点坐标为(5,12).

    【点评】本题是二次函数的综合题,主要考查了待定系数法,二次函数的图象与性质,相似三角形的性质与判定,轴对称的性质应用求线段的最值,第(2)题关键是确定F点的位置,第(3)题关键在于构建相似三角形.
    七.三角形的外接圆与外心(共1小题)
    9.(2021•云南)如图,等边△ABC的三个顶点都在⊙O上,AD是⊙O的直径.若OA=3,则劣弧BD的长是(  )

    A. B.π C. D.2π
    【解答】解:连接OB、BD,如图:

    ∵△ABC为等边三角形,
    ∴∠C=60°,
    ∴∠D=∠C=60°,
    ∵OB=OD,
    ∴△BOD是等边三角形,
    ∴∠BOD=60°,
    ∵半径OA=3,
    ∴劣弧BD的长为=π,
    故选:B.
    【点评】本题考查等边三角形及圆的弧长,解题的关键是掌握弧长公式并能熟练应用.
    八.切线的判定与性质(共1小题)
    10.(2021•云南)如图,AB是⊙O的直径,点C是⊙O上异于A、B的点,连接AC、BC,点D在BA的延长线上,且∠DCA=∠ABC,点E在DC的延长线上,且BE⊥DC.
    (1)求证:DC是⊙O的切线;
    (2)若=,BE=3,求DA的长.

    【解答】(1)证明:连接OC,

    ∵OC=OB,
    ∴∠OCB=∠OBC,
    ∵∠ABC=∠DCA,
    ∴∠OCB=∠DCA,
    又∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠ACO+∠OCB=90°,
    ∴∠DCA+∠ACO=90°,
    即∠DCO=90°,
    ∴DC⊥OC,
    ∵OC是半径,
    ∴DC是⊙O的切线;
    (2)解:∵,且OA=OB,
    设OA=OB=2x,OD=3x,
    ∴DB=OD+OB=5x,
    ∴,
    又∵BE⊥DC,DC⊥OC,
    ∴OC∥BE,
    ∴△DCO∽△DEB,
    ∴,
    ∵BE=3,
    ∴OC=,
    ∴2x=,
    ∴x=,
    ∴AD=OD﹣OA=x=,
    即AD的长为.
    【点评】本题考查了圆周角定理、平行线的性质、等腰三角形的性质、切线的判定、相似三角形的判定与性质等知识;熟练掌握切线的判定与相似三角形的判定和性质是解题的关键.
    九.圆锥的计算(共2小题)
    11.(2020•云南)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是(  )

    A. B.1 C. D.
    【解答】解:设圆锥的底面圆的半径为r,
    根据题意可知:
    AD=AE=4,∠DAE=45°,
    底面圆的周长等于弧长:
    ∴2πr=,
    解得r=.
    答:该圆锥的底面圆的半径是.
    故选:D.
    【点评】本题考查了圆锥的计算,解决本题的关键是掌握圆锥的底面周长与展开后所得扇形的弧长相等.
    12.(2022•云南)某中学开展劳动实习,学生到教具加工厂制作圆锥.他们制作的圆锥,母线长为30cm,底面圆的半径为10cm,这种圆锥的侧面展开图的圆心角度数是  120° .
    【解答】解:设这种圆锥的侧面展开图的圆心角度数是n°,
    2π×10=,
    解得n=120,
    即这种圆锥的侧面展开图的圆心角度数是120°,
    故答案为:120°.
    【点评】本题考查圆锥的计算、一元一次方程的应用,解答本题的关键是明确圆锥的底面圆的周长=扇形的弧长.
    一十.关于原点对称的点的坐标(共1小题)
    13.(2022•云南)点A(1,﹣5)关于原点的对称点为点B,则点B的坐标为  (﹣1,5) .
    【解答】解:∵点A(1,﹣5)关于原点对称点为点B,
    ∴点B的坐标为(﹣1,5).
    故答案为:(﹣1,5).
    【点评】本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.
    一十一.概率的意义(共1小题)
    14.(2020•云南)下列说法正确的是(  )
    A.为了解三名学生的视力情况,采用抽样调查
    B.任意画一个三角形,其内角和是360°是必然事件
    C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定
    D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖
    【解答】解:了解三名学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A不符合题意;
    任意画一个三角形,其内角和是360°是不可能事件,因此选项B不符合题意;
    根据平均数和方差的意义可得选项C符合题意;
    一个抽奖活动中,中奖概率为,表示中奖的可能性为,不代表抽奖20次就有1次中奖,因此选项D不符合题意;
    故选:C.
    【点评】本题考查普查、抽查,三角形的内角和,方差和概率的意义,理解各个概念的内涵是正确判断的前提.
    一十二.列表法与树状图法(共3小题)
    15.(2022•云南)某班甲、乙两名同学被推荐到学校艺术节上表演节目,计划用葫芦丝合奏一首乐曲.要合奏的乐曲是用游戏的方式在《月光下的凤尾竹》与《彩云之南》中确定一首.
    游戏规则如下,在一个不透明的口袋中装有分别标有数字1,2,3,4的四个小球(除标号外,其余都相同),甲从口袋中任意摸出1个小球,小球上的数字记为a.在另一个不透明的口袋中装有分别标有数字1,2的两张卡片(除标号外,其余都相同),乙从口袋里任意摸出1张卡片,卡片上的数字记为b.然后计算这两个数的和,即a+b.若a+b为奇数,则演奏《月光下的凤尾竹》;否则,演奏《彩云之南》.
    (1)用列表法或画树状图法中的一种方法,求(a,b)所有可能出现的结果总数;
    (2)你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,哪一首乐曲更可能被选中?
    【解答】解:(1)按游戏规则计算两个数的和,列表如下:

    从表中可以看出共有8种等可能;
    (2)我认为这个游戏公平,理由:
    从表中可以看出共有8种等可能,其中和为奇数与和为偶数的等可能性各有4种,
    所以P(和为奇数)=P(和为偶数),
    ∴这个游戏公平.
    【点评】本题主要考查了列表法或树状图法,游戏的公平性,事件的概率,利用游戏规则正确列出表格是解题的关键.
    16.(2021•云南)为庆祝中国共产党成立100周年,某市组织该市七、八两个年级学生参加演讲比赛,演讲比赛的主题为“追忆百年历程,凝聚青春力量”.该市一中学经过初选,在七年级选出3名同学,其中2名女生,分别记为x1、x2,1名男生,记为y1;在八年级选出3名同学,其中1名女生,记为x3,2名男生,分别记为y2、y3.现分别从两个年级初选出的同学中,每个年级随机选出一名同学组成代表队参加比赛.
    (1)用列表法或树状图法(树状图也称树形图)中的一种方法,求所有可能出现的代表队总数;
    (2)求选出的代表队中的两名同学恰好是一名男生和一名女生的概率P.
    【解答】解:(1)树状图如下图所示:

    由上可得,出现的代表队一共有9种可能性;
    (2)由(1)可知,一共9种可能性,其中一男一女出现有5种,
    故选出的代表队中的两名同学恰好是一名男生和一名女生的概率P=.
    【点评】本题考查列表法与树状图法,解答本题的关键是画出相应的树状图,求出相应的概率.
    17.(2020•云南)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.
    (1)直接写出甲家庭选择到大理旅游的概率;
    (2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.
    【解答】解:(1)甲家庭选择到大理旅游的概率为;

    (2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,
    列表得:

    A
    B
    C
    A
    (A,A)
    (A,B)
    (A,C)
    B
    (B,A)
    (B,B)
    (B,C)
    C
    (C,A)
    (C,B)
    (C,C)
    由表格可知,共有9种等可能性结果,其中甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的有3种结果,
    所以甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率P==.
    【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
    一十三.游戏公平性(共1小题)
    18.(2020•昆明)有一个可自由转动的转盘,被分成了三个大小相同的扇形,分别标有数字2,4,6;另有一个不透明的瓶子,装有分别标有数字1,3,5的三个完全相同的小球.小杰先转动一次转盘,停止后记下指针指向的数字(若指针指在分界线上则重转),小玉再从瓶子中随机取出一个小球,记下小球上的数字.
    (1)请用列表或画树状图的方法(选其中一种)表示出所有可能出现的结果;
    (2)若得到的两数字之和是3的倍数,则小杰赢;若得到的两数字之和是7的倍数,则小玉赢,此游戏公平吗?为什么?

    【解答】解:(1)用列表法表示所有可能出现的结果情况如下:

    共有9种不同结果,即(2,1)(2.3)(2,5)(4,1)(4,3)(4,5)(6,1)(6,3)(6,5);
    (2)列出两次得数之和的所有可能的结果如下:

    共有9种可能出现的结果,其中“和为3的倍数”的有3种,“和为7的倍数”的有3种,
    ∴P(小杰胜)==,P(小玉胜)==,
    因此游戏是公平的.
    【点评】本题考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.

    相关试卷

    四川省德阳市3年(2020-2022)中考数学真题汇编-第21-29章【人教版九年级】:

    这是一份四川省德阳市3年(2020-2022)中考数学真题汇编-第21-29章【人教版九年级】,共45页。试卷主要包含了关于x轴对称等内容,欢迎下载使用。

    重庆年(2020-2022)中考数学真题汇编-第21-29章【人教版九年级】:

    这是一份重庆年(2020-2022)中考数学真题汇编-第21-29章【人教版九年级】,共70页。试卷主要包含了两点等内容,欢迎下载使用。

    思创省广元市3年(2020-2022)中考数学真题汇编-第21-29章【人教版九年级】:

    这是一份思创省广元市3年(2020-2022)中考数学真题汇编-第21-29章【人教版九年级】,共43页。试卷主要包含了,并与x轴交于点A,之间存在如图所示的关系,的坐标值等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map