第22章+二次函数(解答题基础题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
展开第22章 二次函数(解答题基础题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
一.二次函数图象与几何变换(共2小题)
1.(2021•荆州)小爱同学学习二次函数后,对函数y=﹣(|x|﹣1)2进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:
(1)观察探究:
①写出该函数的一条性质: ;
②方程﹣(|x|﹣1)2=﹣1的解为: ;
③若方程﹣(|x|﹣1)2=a有四个实数根,则a的取值范围是 .
(2)延伸思考:
将函数y=﹣(|x|﹣1)2的图象经过怎样的平移可得到函数y1=﹣(|x﹣2|﹣1)2+3的图象?写出平移过程,并直接写出当2<y1≤3时,自变量x的取值范围.
2.(2020•湖北)把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.
(1)直接写出抛物线C2的函数关系式;
(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;
(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.
二.二次函数的应用(共6小题)
3.(2022•荆州)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y(万件)与售价x(元/件)之间满足函数关系式y=24﹣x,第一年除60万元外其他成本为8元/件.
(1)求该产品第一年的利润w(万元)与售价x之间的函数关系式;
(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.
①求该产品第一年的售价;
②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?
4.(2021•湖北)去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售,为此当地政府决定给予其销售的这种消毒液按a元/件进行补贴,设某月销售价为x元/件,a与x之间满足关系式:a=20%(10﹣x),下表是某4个月的销售记录,每月销售量y(万件)与该月销售价x(元/件)之间成一次函数关系(6≤x<9).
月份
…
二月
三月
四月
五月
…
销售价
x(元/件)
…
6
7
7.6
8.5
…
该月销售量
y(万件)
…
30
20
14
5
…
(1)求y与x的函数关系式;
(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?
(3)当销售价x定为多少时,该月纯收入最大?
(纯收入=销售总金额﹣成本+政府当月补贴)
5.(2021•随州)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A处,另一端固定在离地面高2米的墙体B处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y(米)与其离墙体A的水平距离x(米)之间的关系满足y=﹣x2+bx+c,现测得A,B两墙体之间的水平距离为6米.
(1)直接写出b,c的值;
(2)求大棚的最高处到地面的距离;
(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?
6.(2021•湖北)红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元,一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元),月销售量为y(单位:万件).
(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;
(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?
(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元,月销售最大利润是78万元,求a的值.
7.(2021•武汉)在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品.A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.
(1)求每盒产品的成本(成本=原料费+其他成本);
(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);
(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.
8.(2020•黄冈)网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).
(1)请求出日获利w与销售单价x之间的函数关系式;
(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?
(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.
第22章 二次函数(解答题基础题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
参考答案与试题解析
一.二次函数图象与几何变换(共2小题)
1.(2021•荆州)小爱同学学习二次函数后,对函数y=﹣(|x|﹣1)2进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:
(1)观察探究:
①写出该函数的一条性质: 函数图象关于y轴对称 ;
②方程﹣(|x|﹣1)2=﹣1的解为: x=﹣2或x=0或x=2 ;
③若方程﹣(|x|﹣1)2=a有四个实数根,则a的取值范围是 ﹣1<a<0 .
(2)延伸思考:
将函数y=﹣(|x|﹣1)2的图象经过怎样的平移可得到函数y1=﹣(|x﹣2|﹣1)2+3的图象?写出平移过程,并直接写出当2<y1≤3时,自变量x的取值范围.
【解答】解:(1)观察探究:
①该函数的一条性质为:函数图象关于y轴对称;
②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;
③若方程﹣(|x|﹣1)2=a有四个实数根,则a的取值范围是﹣1<a<0.
故答案为函数图象关于y轴对称;x=﹣2或x=0或x=2;﹣1<a<0.
(2)将函数y=﹣(|x|﹣1)2的图象向右平移2个单位,向上平移3个单位可得到函数y1=﹣(|x﹣2|﹣1)2+3的图象,
当2<y1≤3时,自变量x的取值范围是0<x<4且x≠2.
2.(2020•湖北)把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.
(1)直接写出抛物线C2的函数关系式;
(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;
(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.
【解答】解:(1)∵y=x2+2x+3=(x+1)2+2,
∴把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2:y=(x+1﹣4)2+2﹣5,即y=(x﹣3)2﹣3,
∴抛物线C2的函数关系式为:y=(x﹣3)2﹣3.
(2)动点P(a,﹣6)不在抛物线C2上,理由如下:
∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,
∴函数的最小值为﹣3,
∵﹣6<﹣3,
∴动点P(a,﹣6)不在抛物线C2上;
(3)∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,
∴抛物线的开口向上,对称轴为直线x=3,
∴当x<3时,y随x的增大而减小,
∵点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0<3,
∴y1>y2.
二.二次函数的应用(共6小题)
3.(2022•荆州)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y(万件)与售价x(元/件)之间满足函数关系式y=24﹣x,第一年除60万元外其他成本为8元/件.
(1)求该产品第一年的利润w(万元)与售价x之间的函数关系式;
(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.
①求该产品第一年的售价;
②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?
【解答】解:(1)根据题意得:w=(x﹣8)(24﹣x)﹣60=﹣x2+32x﹣252;
(2)①∵该产品第一年利润为4万元,
∴4=﹣x2+32x﹣252,
解得:x=16,
答:该产品第一年的售价是16元.
②∵第二年产品售价不超过第一年的售价,销售量不超过13万件,
∴,
解得11≤x≤16,
设第二年利润是w'万元,
w'=(x﹣6)(24﹣x)﹣4=﹣x2+30x﹣148,
∵抛物线开口向下,对称轴为直线x=15,又11≤x≤16,
∴x=11时,w'有最小值,最小值为(11﹣6)×(24﹣11)﹣4=61(万元),
答:第二年的利润至少为61万元.
4.(2021•湖北)去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售,为此当地政府决定给予其销售的这种消毒液按a元/件进行补贴,设某月销售价为x元/件,a与x之间满足关系式:a=20%(10﹣x),下表是某4个月的销售记录,每月销售量y(万件)与该月销售价x(元/件)之间成一次函数关系(6≤x<9).
月份
…
二月
三月
四月
五月
…
销售价
x(元/件)
…
6
7
7.6
8.5
…
该月销售量
y(万件)
…
30
20
14
5
…
(1)求y与x的函数关系式;
(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?
(3)当销售价x定为多少时,该月纯收入最大?
(纯收入=销售总金额﹣成本+政府当月补贴)
【解答】解:(1)∵每月销售量y与该月销售价x之间成一次函数关系,
∴设y与x的函数关系式为:y=kx+b,
则,
解得:,
∴y与x的函数关系式y=﹣10x+90(6≤x<9);
(2)当x=8时,y=﹣10×8+90=10(万件),
∵a与x之间满足关系式:a=20%(10﹣x),
∴当销售价为8元/件时,政府该月应付给厂家补贴为:10a=10×20%(10﹣8)=4(万元),
答:当销售价为8元/件时,政府该月应付给厂家补贴4万元;
(3)设该月的纯收入w万元,
则w=y[(x﹣6)+0.2(10﹣x)]=(﹣10x+90)(0.8x﹣4)=﹣8x2+112x﹣360=﹣8(x﹣7)2+32,
∵﹣8<0,6≤x<9
∴当x=7时,w最大,最大值为32万元,
答:当销售价定为7时,该月纯收入最大.
5.(2021•随州)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A处,另一端固定在离地面高2米的墙体B处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y(米)与其离墙体A的水平距离x(米)之间的关系满足y=﹣x2+bx+c,现测得A,B两墙体之间的水平距离为6米.
(1)直接写出b,c的值;
(2)求大棚的最高处到地面的距离;
(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?
【解答】解:(1)b=,c=1.
(2)由y==,
可知当x=时,y有最大值,
故大棚最高处到地面的距离为米;
(3)令y=,则有=,
解得x1=,x2=,
又∵0≤x≤6,
∴大棚内可以搭建支架的土地的宽为6﹣=(米),
又大棚的长为16米,
∴需要搭建支架部分的土地面积为16×=88(平方米),
故共需要88×4=352(根)竹竿,
答:共需要准备352根竹竿.
6.(2021•湖北)红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元,一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元),月销售量为y(单位:万件).
(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;
(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?
(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元,月销售最大利润是78万元,求a的值.
【解答】解:(1)由题知,①当40≤x≤50时,y=5,
②当50<x≤100时,y=5﹣(x﹣50)×0.1=10﹣0.1x,
∴y与x之间的函数关系式为:y=;
(2)设月销售利润为z,由题知,
①当40≤x≤50时,x=50时利润最大,
此时z=(50﹣40)×5=50(万元),
②当50<x≤100时,z=(x﹣40)y=(x﹣40)(10﹣0.1x)=﹣0.1x2+14x﹣400=﹣0.1(x﹣70)2+90,
∴当x=70时,z有最大值为90万元,
即当月销售单价是70元时,月销售利润最大,最大利润是90万元;
(3)由题知,利润z=(x﹣40﹣a)(10﹣0.1x)=﹣0.1x2+(14+0.1a)x﹣400﹣10a,
此函数的对称轴为:直线x=﹣=70+0.5a>70,
∴当月销售单价是70元时,月销售利润最大,
即(70﹣40﹣a)×(10﹣0.1×70)=78,
解得a=4,
∴a的值为4.
7.(2021•武汉)在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品.A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.
(1)求每盒产品的成本(成本=原料费+其他成本);
(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);
(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.
【解答】解:(1)设B原料单价为m元,则A原料单价为1.5m元,
根据题意,得﹣=100,
解得m=3,
经检验m=3是方程的解,
∴1.5m=4.5,
∴每盒产品的成本是:4.5×2+4×3+9=30(元),
答:每盒产品的成本为30元;
(2)根据题意,得w=(x﹣30)[500﹣10(x﹣60)]=﹣10x2+1400x﹣33000,
∴w关于x的函数解析式为:w=﹣10x2+1400x﹣33000;
(3)由(2)知w=﹣10x2+1400x﹣33000=﹣10(x﹣70)2+16000,
∴当a≥70时,每天最大利润为16000元,
当60<a<70时,每天的最大利润为(﹣10a2+1400a﹣33000)元.
8.(2020•黄冈)网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).
(1)请求出日获利w与销售单价x之间的函数关系式;
(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?
(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.
【解答】解:(1)当y≥4000,即﹣100x+5000≥4000,
∴x≤10,
∴当6≤x≤10时,w=(x﹣6+1)(﹣100x+5000)﹣2000=﹣100x2+5500x﹣27000,
当10<x≤30时,w=(x﹣6)(﹣100x+5000)﹣2000=﹣100x2+5600x﹣32000,
综上所述:w=;
(2)当6≤x≤10时,w=﹣100x2+5500x﹣27000=﹣100(x﹣)2+48625,
∵a=﹣100<0,对称轴为x=,
∴当6≤x≤10时,w随x的增大而增大,即当x=10时,w最大值=18000元,
当10<x≤30时,w=﹣100x2+5600x﹣32000=﹣100(x﹣28)2+46400,
∵a=﹣100<0,对称轴为x=28,
∴当x=28时,w有最大值为46400元,
∵46400>18000,
∴当销售单价定为28元/kg时,销售这种板栗日获利最大,最大利润为46400元;
(3)∵40000>18000,
∴10<x≤30,
∴w=﹣100x2+5600x﹣32000,
当w=40000元时,40000=﹣100x2+5600x﹣32000,
∴x1=20,x2=36,
∴当20≤x≤36时,w≥40000,
又∵10<x≤30,
∴20≤x≤30,
此时:日获利w1=(x﹣6﹣a)(﹣100x+5000)﹣2000=﹣100x2+(5600+100a)x﹣32000﹣5000a,
∴对称轴为直线x=﹣=28+a,
∵a<4,
∴28+a<30,
∴当x=28+a时,日获利的最大值为42100元,
∴(28+a﹣6﹣a)[﹣100×(28+a)+5000]﹣2000=42100,
∴a1=2,a2=86,
∵a<4,
∴a=2.
第24章+圆(解答题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北): 这是一份第24章+圆(解答题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共28页。试卷主要包含了CD=5m等内容,欢迎下载使用。
第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西): 这是一份第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共35页。试卷主要包含了在x轴上方的抛物线对称轴上运动,,与y轴交于点C,,对称轴为直线x=2,,顶点为B等内容,欢迎下载使用。
第22章二次函数(解答题基础题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江): 这是一份第22章二次函数(解答题基础题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江),共23页。试卷主要包含了两点,与y轴交于点C,顶点为D,综合与探究等内容,欢迎下载使用。