第22章+二次函数选择题-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
展开第22章 二次函数选择题-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
一.二次函数的性质(共1小题)
1.(2022•荆门)抛物线y=x2+3上有两点A(x1,y1),B(x2,y2),若y1<y2,则下列结论正确的是( )
A.0≤x1<x2 B.x2<x1≤0
C.x2<x1≤0或0≤x1<x2 D.以上都不对
二.二次函数图象与系数的关系(共13小题)
2.(2022•黄石)已知二次函数y=ax2+bx+c的部分图象如图所示,对称轴为直线x=﹣1,有以下结论:
①abc<0;②若t为任意实数,则有a﹣bt≤at2+b;③当图象经过点(1,3)时,方程ax2+bx+c﹣3=0的两根为x1,x2(x1<x2),则x1+3x2=0,其中,正确结论的个数是( )
A.0 B.1 C.2 D.3
3.(2022•荆门)抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)和点(x0,y0),且c>0.有下列结论:①a<0;②对任意实数m都有:am2+bm≥4a﹣2b;③16a+c>4b;④若x0>﹣4,则y0>c.其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
4.(2022•恩施州)已知抛物线y=x2﹣bx+c,当x=1时,y<0;当x=2时,y<0.下列判断:
①b2>2c;②若c>1,则b>;③已知点A(m1,n1),B(m2,n2)在抛物线y=x2﹣bx+c上,当m1<m2<b时,n1>n2;④若方程x2﹣bx+c=0的两实数根为x1,x2,则x1+x2>3.其中正确的有( )个.
A.1 B.2 C.3 D.4
5.(2022•湖北)二次函数y=(x+m)2+n的图象如图所示,则一次函数y=mx+n的图象经过( )
A.第一、二、三象限 B.第一、二、四象限
C.第一、三、四象限 D.第二、三、四象限
6.(2022•随州)如图,已知开口向下的抛物线y=ax2+bx+c与x轴交于点(﹣1,0),对称轴为直线x=1.则下列结论正确的有( )
①abc>0;
②2a+b=0;
③函数y=ax2+bx+c的最大值为﹣4a;
④若关于x的方程ax2+bx+c=a+1无实数根,则﹣<a<0.
A.1个 B.2个 C.3个 D.4个
7.(2021•襄阳)一次函数y=ax+b的图象如图所示,则二次函数y=ax2+bx的图象可能是( )
A. B.
C. D.
8.(2021•鄂州)二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示.已知图象经过点(﹣1,0),其对称轴为直线x=1.
①abc<0;
②4a+2b+c<0;
③8a+c<0;
④若抛物线经过点(﹣3,n),则关于x的一元二次方程ax2+bx+c﹣n=0(a≠0)的两根分别为﹣3,5.
上述结论中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
9.(2021•荆门)抛物线y=ax2+bx+c(a,b,c为常数)开口向下且过点A(1,0),B(m,0)(﹣2<m<﹣1),下列结论:①2b+c>0;②2a+c<0;③a(m+1)﹣b+c>0;④若方程a(x﹣m)(x﹣1)﹣1=0有两个不相等的实数根,则4ac﹣b2<4a.其中正确结论的个数是( )
A.4 B.3 C.2 D.1
10.(2021•随州)如图,已知抛物线y=ax2+bx+c的对称轴在y轴右侧,抛物线与x轴交于点A(﹣2,0)和点B,与y轴的负半轴交于点C,且OB=2OC,则下列结论:①>0;②2b﹣4ac=1;③a=;④当﹣1<b<0时,在x轴下方的抛物线上一定存在关于对称轴对称的两点M,N(点M在点N左边),使得AN⊥BM,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
11.(2021•恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴交于(﹣3,0),顶点是(﹣1,m),则以下结论:①abc>0;②4a+2b+c>0;③若y≥c,则x≤﹣2或x≥0;④b+c=m.其中正确的有( )个.
A.1 B.2 C.3 D.4
12.(2020•恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有( )个.
A.0 B.1 C.2 D.3
13.(2020•鄂州)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B,与y轴交于点C.下列结论:①abc<0,②2a+b<0,③4a﹣2b+c>0,④3a+c>0,其中正确的结论个数为( )
A.1个 B.2个 C.3个 D.4个
14.(2020•襄阳)二次函数y=ax2+bx+c的图象如图所示,下列结论:
①ac<0;②3a+c=0;③4ac﹣b2<0;④当x>﹣1时,y随x的增大而减小.
其中正确的有( )
A.4个 B.3个 C.2个 D.1个
三.二次函数图象上点的坐标特征(共2小题)
15.(2022•鄂州)如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象顶点为P(1,m),经过点A(2,1).有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有( )
A.2个 B.3个 C.4个 D.5个
16.(2020•黄石)若二次函数y=a2x2﹣bx﹣c的图象,过不同的六点A(﹣1,n)、B(5,n﹣1)、C(6,n+1)、D(,y1)、E(2,y2)、F(4,y3),则y1、y2、y3的大小关系是( )
A.y1<y2<y3 B.y1<y3<y2 C.y2<y3<y1 D.y2<y1<y3
四.二次函数图象与几何变换(共1小题)
17.(2020•孝感)将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为( )
A.y=﹣x2﹣2 B.y=﹣x2+2 C.y=x2﹣2 D.y=x2+2
五.抛物线与x轴的交点(共3小题)
18.(2021•湖北)若抛物线y=x2+bx+c与x轴两个交点间的距离为4.对称轴为直线x=2,P为这条抛物线的顶点,则点P关于x轴的对称点的坐标是( )
A.(2,4) B.(﹣2,4) C.(﹣2,﹣4) D.(2,﹣4)
19.(2020•随州)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴的正半轴交于点C,顶点为D,则下列结论:
①2a+b=0;
②2c<3b;
③当△ABC是等腰三角形时,a的值有2个;
④当△BCD是直角三角形时,a=﹣.
其中正确的有( )
A.1个 B.2个 C.3个 D.4个
20.(2020•荆门)若抛物线y=ax2+bx+c(a>0)经过第四象限的点(1,﹣1),则关于x的方程ax2+bx+c=0的根的情况是( )
A.有两个大于1的不相等实数根
B.有两个小于1的不相等实数根
C.有一个大于1另一个小于1的实数根
D.没有实数根
六.图象法求一元二次方程的近似根(共1小题)
21.(2021•黄石)二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的自变量x与函数值y的部分对应值如下表:
x
…
﹣1
0
1
2
…
y
…
m
2
2
n
…
且当x=时,对应的函数值y<0.有以下结论:
①abc>0;②m+n<﹣;③关于x的方程ax2+bx+c=0的负实数根在﹣和0之间;④P1(t﹣1,y1)和P2(t+1,y2)在该二次函数的图象上,则当实数t>时,y1>y2.
其中正确的结论是( )
A.①② B.②③ C.③④ D.②③④
第22章 二次函数选择题-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
参考答案与试题解析
一.二次函数的性质(共1小题)
1.(2022•荆门)抛物线y=x2+3上有两点A(x1,y1),B(x2,y2),若y1<y2,则下列结论正确的是( )
A.0≤x1<x2 B.x2<x1≤0
C.x2<x1≤0或0≤x1<x2 D.以上都不对
【解答】解:∵抛物线y=x2+3上有两点A(x1,y1),B(x2,y2),且y1<y2,
∴|x1|<|x2|,
∴0≤x1<x2或x2<x1≤0或0<﹣x1<x2或0<x1<﹣x2,
故选:D.
二.二次函数图象与系数的关系(共13小题)
2.(2022•黄石)已知二次函数y=ax2+bx+c的部分图象如图所示,对称轴为直线x=﹣1,有以下结论:
①abc<0;②若t为任意实数,则有a﹣bt≤at2+b;③当图象经过点(1,3)时,方程ax2+bx+c﹣3=0的两根为x1,x2(x1<x2),则x1+3x2=0,其中,正确结论的个数是( )
A.0 B.1 C.2 D.3
【解答】解:∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴为直线x=﹣1,
即﹣=﹣1,
∴b=2a>0,
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∴abc<0,所以①正确;
∵x=﹣1时,y有最小值,
∴a﹣b+c≤at2+bt+c(t为任意实数),
即a﹣bt≤at2+b,所以②正确;
∵图象经过点(1,3)时,得ax2+bx+c﹣3=0的两根为x1,x2(x1<x2),
∴二次函数y=ax2+bx+c与直线y=3的一个交点为(1,3),
∵抛物线的对称轴为直线x=﹣1,
∴二次函数y=ax2+bx+c与直线y=3的另一个交点为(﹣3,3),
即x1=﹣3,x2=1,
∴x1+3x2=﹣3+3=0,所以③正确.
故选:D.
3.(2022•荆门)抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)和点(x0,y0),且c>0.有下列结论:①a<0;②对任意实数m都有:am2+bm≥4a﹣2b;③16a+c>4b;④若x0>﹣4,则y0>c.其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
【解答】解:∵抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2),且c>0,
∴抛物线开口向下,则a<0,故①正确;
∵抛物线开口向下,对称轴为x=﹣2,
∴函数的最大值为4a﹣2b+c,
∴对任意实数m都有:am2+bm+c≤4a﹣2b+c,即am2+bm≤4a﹣2b,故②错误;
∵对称轴为x=﹣2,c>0.
∴当x=﹣4时的函数值大于0,即16a﹣4b+c>0,
∴16a+c>4b,故③正确;
∵对称轴为x=﹣2,点(0,c)的对称点为(﹣4,c),
∵抛物线开口向下,
∴若﹣4<x0<0,则y0>c,故④错误;
故选:B.
4.(2022•恩施州)已知抛物线y=x2﹣bx+c,当x=1时,y<0;当x=2时,y<0.下列判断:
①b2>2c;②若c>1,则b>;③已知点A(m1,n1),B(m2,n2)在抛物线y=x2﹣bx+c上,当m1<m2<b时,n1>n2;④若方程x2﹣bx+c=0的两实数根为x1,x2,则x1+x2>3.其中正确的有( )个.
A.1 B.2 C.3 D.4
【解答】解:∵a=>0,
∴抛物线开口向上,
当x=1时,y<0;当x=2时,y<0,
∴抛物线 与x轴有两个不同的交点,
∴Δ=b2﹣4ac=b2﹣2c>0,故①正确;
∵当x=1时,y<0;当x=2时,y<0,
∴﹣b+c<0;
∴b>+c,
当c>1时,则b>,故②正确;
抛物线的对称轴为直线x=b,且开口向上,
当x<b时,y的值随x的增大而减小,
∴当m1<m2<b时,n1>n2,故③正确;
∵方程x2﹣bx+c=0的两实数根为x1,x2,
∴x1+x2=2b,
由②可知,当c>1时,则b>,
∴x1+x2不一定大于3,故④错误;
综上,正确的有①②③,共3个,
故选:C.
5.(2022•湖北)二次函数y=(x+m)2+n的图象如图所示,则一次函数y=mx+n的图象经过( )
A.第一、二、三象限 B.第一、二、四象限
C.第一、三、四象限 D.第二、三、四象限
【解答】解:∵y=(x+m)2+n,
∴抛物线顶点坐标为(﹣m,n),
∵抛物线顶点在第四象限,
∴m<0,n<0,
∴直线y=mx+n经过第二,三,四象限,
故选:D.
6.(2022•随州)如图,已知开口向下的抛物线y=ax2+bx+c与x轴交于点(﹣1,0),对称轴为直线x=1.则下列结论正确的有( )
①abc>0;
②2a+b=0;
③函数y=ax2+bx+c的最大值为﹣4a;
④若关于x的方程ax2+bx+c=a+1无实数根,则﹣<a<0.
A.1个 B.2个 C.3个 D.4个
【解答】解:∵抛物线开口向下,
∴a<0,
∵抛物线交y轴于正半轴,
∴c>0,
∵﹣>0,
∴b>0,
∴abc<0,故①错误.
∵抛物线的对称轴是直线x=1,
∴﹣=1,
∴2a+b=0,故②正确.
∵抛物线交x轴于点(﹣1,0),(3,0),
∴可以假设抛物线的解析式为y=a(x+1)(x﹣3),
当x=1时,y的值最大,最大值为﹣4a,故③正确.
∵ax2+bx+c=a+1无实数根,
∴a(x+1)(x﹣3)=a+1无实数根,
∴ax2﹣2ax﹣4a﹣1=0,Δ<0,
∴4a2﹣4a(﹣4a﹣1)<0,
∴a(5a+1)<0,
∴﹣<a<0,故④正确,
故选:C.
7.(2021•襄阳)一次函数y=ax+b的图象如图所示,则二次函数y=ax2+bx的图象可能是( )
A. B.
C. D.
【解答】解:∵一次函数y=ax+b的图象经过一、二、四象限,
∴a<0,b>0,
∴二次函数y=ax2+bx的图象:开口方向向下,对称轴在y轴右侧,
故选:D.
8.(2021•鄂州)二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示.已知图象经过点(﹣1,0),其对称轴为直线x=1.
①abc<0;
②4a+2b+c<0;
③8a+c<0;
④若抛物线经过点(﹣3,n),则关于x的一元二次方程ax2+bx+c﹣n=0(a≠0)的两根分别为﹣3,5.
上述结论中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
【解答】解:∵抛物线的开口向下,
∴a<0.
∵抛物线与y轴的正半轴相交,
∴c>0.
∵抛物线的对称轴为直线x=1,
∴﹣,
∴b=﹣2a,b>0.
∵抛物线经过点(﹣1,0),
∴a﹣b+c=0.
①∵a<0,b>0,c>0,
∴abc<0.
故①正确;
②∵b=﹣2a,
∴4a+2b+c=4a+2×(﹣2a)+c=4a﹣4a+c=c>0.
故②错误;
③∵a﹣b+c=0,
∴a﹣(﹣2a)+c=0,即3a+c=0.
∴8a+c=3a+c+5a=5a<0.
故③正确;
④∵抛物线经过点(﹣3,n),其对称轴为直线x=1,
∴根据对称性,抛物线必经过点(5,n),
∴当y=n时,x=﹣3或5.
∵y=ax2+bx+c(a≠0),
∴当ax2+bx+c=n(a≠0)时,x=﹣3或5.
即关于x的一元二次方程ax2+bx+c﹣n=0(a≠0)的两根分别为﹣3,5.
故④正确;
综上,正确的结论有:①③④.
故选:C.
9.(2021•荆门)抛物线y=ax2+bx+c(a,b,c为常数)开口向下且过点A(1,0),B(m,0)(﹣2<m<﹣1),下列结论:①2b+c>0;②2a+c<0;③a(m+1)﹣b+c>0;④若方程a(x﹣m)(x﹣1)﹣1=0有两个不相等的实数根,则4ac﹣b2<4a.其中正确结论的个数是( )
A.4 B.3 C.2 D.1
【解答】解:根据题意得a+b+c=0,
∴b=﹣a﹣c,
当x=﹣2时,有4a﹣2b+c<0,
∴4a﹣2(﹣a﹣c)+c<0,
∴2a+c<0,
∴②正确,
由2a+c<0,得﹣2a﹣c>0,
∴2(﹣a﹣c)+c>0,
∴2b+c>0,
∴①正确,
若a(m+1)﹣b+c>0,
则a﹣b+c>﹣am,
取x=﹣1,则y=a﹣b+c>0,
又∵抛物线开口向下,
∴a<0,m<0,
∴﹣am<0
∴﹣am<a﹣b+c,
即a(m+1)﹣b+c>0成立,
∴③正确,
若方程a(x﹣m)(x﹣1)﹣1=0有两个不相等的实数根,
即a(x﹣m)(x﹣1)=1有两个不相等的实数根,
∴顶点的纵坐标,
∵a<0,
∴4ac﹣b2<4a,
∴④正确,
故选:A.
10.(2021•随州)如图,已知抛物线y=ax2+bx+c的对称轴在y轴右侧,抛物线与x轴交于点A(﹣2,0)和点B,与y轴的负半轴交于点C,且OB=2OC,则下列结论:①>0;②2b﹣4ac=1;③a=;④当﹣1<b<0时,在x轴下方的抛物线上一定存在关于对称轴对称的两点M,N(点M在点N左边),使得AN⊥BM,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:∵A(﹣2,0),OB=2OC,
∴C(0,c),B(﹣2c,0).
由图象可知,a>0,b<0,c<0.
①:∵a>0,b<0,
∴a﹣b>0,
∴.故①错误;
②:把B(﹣2c,0)代入解析式,得:
4ac2﹣2bc+c=0,又c≠0,
∴4ac﹣2b+1=0,
即2b﹣4ac=1,故②正确;
③:∵抛物线与x轴交于点A(﹣2,0)和点B(﹣2c,0),
∴x1=﹣2和x2=﹣2c为相应的一元二次方程的两个根,
由韦达定理可得:x1•x2==(﹣2)×(﹣2c)=4c,
∴a=.故③正确;
④:如图,
∵a=,2b﹣4ac=1,
∴c=2b﹣1.
故原抛物线解析式为y=x2+bx+(2b﹣1),顶点坐标为(﹣2b,﹣b2+2b﹣1).
∵C(0,2b﹣1),OB=2OC,
∴A(﹣2,0),B(2﹣4b,0).
∴对称轴为直线x=﹣2b.
要使AN⊥BM,由对称性可知,∠APB=90°,且点P一定在对称轴上,
∵△APB为等腰直角三角形,
∴PQ==[2﹣4b﹣(﹣2)]=2﹣2b,
∴P(﹣2b,2b﹣2),且有2b﹣2>﹣b2+2b﹣1,
整理得:b2>1,且b<0,
解得:b<﹣1,这与﹣1<b<0矛盾,故④错误.
综上所述,正确的有②③,一共2个,
故选:B.
11.(2021•恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴交于(﹣3,0),顶点是(﹣1,m),则以下结论:①abc>0;②4a+2b+c>0;③若y≥c,则x≤﹣2或x≥0;④b+c=m.其中正确的有( )个.
A.1 B.2 C.3 D.4
【解答】解:①∵抛物线开口向上,对称轴在y轴左边,与y轴交于负半轴,
∴a>0,b>0,c<0,
∴abc<0,
故结论①错误;
②∵二次函数y=ax2+bx+c的图象与x轴交于(﹣3,0),顶点是(﹣1,m),
∴抛物线与x轴的另一个交点为(1,0),
∵抛物线开口向上,
∴当x=2时,y=4a+2b+c>0,
故结论②正确;
③由题意可知对称轴为:直线x=﹣1,
∴x=,
∴b=2a,
把y=c,b=2a代入y=ax2+bx+c得:
ax2+2ax+c=c,
∴x2+2x=0,
解得x=0或﹣2,
∴当y≥c,则x≤﹣2或x≥0,
故结论③正确;
④把(﹣1,m),(1,0)代入y=ax2+bx+c得:
a﹣b+c=m,a+b+c=0,
∴b=,
∵b=2a,
∴a=,
∵抛物线与x轴的另一个交点为(1,0),
∴a+b+c=0,
∴c=,
∴b+c=,
故选:B.
12.(2020•恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有( )个.
A.0 B.1 C.2 D.3
【解答】解:对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c>0,故ac<0,因此①错误;
对于②:二次函数的图象与x轴相交于A(﹣2,0)、B(1,0),由对称性可知,其对称轴为:,因此②错误;
对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x﹣1)=ax2+ax﹣2a,比较一般式与交点式的系数可知:b=a,c=﹣2a,故2a+c=0,因此③正确;
对于④:当x=﹣1时对应的y=a﹣b+c,观察图象可知x=﹣1时对应的函数图象的y值在x轴上方,故a﹣b+c>0,因此④正确.
∴只有③④是正确的.
故选:C.
13.(2020•鄂州)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B,与y轴交于点C.下列结论:①abc<0,②2a+b<0,③4a﹣2b+c>0,④3a+c>0,其中正确的结论个数为( )
A.1个 B.2个 C.3个 D.4个
【解答】解:①∵由抛物线的开口向上知a>0,
∵对称轴位于y轴的右侧,
∴b<0.
∵抛物线与y轴交于负半轴,
∴c<0,
∴abc>0;
故错误;
②对称轴为直线x=﹣<1,得2a>﹣b,即2a+b>0,
故错误;
③如图,当x=﹣2时,y>0,4a﹣2b+c>0,
故正确;
④∵当x=﹣1时,y=0,
∴0=a﹣b+c<a+2a+c=3a+c,即3a+c>0.
故正确.
综上所述,有2个结论正确.
故选:B.
14.(2020•襄阳)二次函数y=ax2+bx+c的图象如图所示,下列结论:
①ac<0;②3a+c=0;③4ac﹣b2<0;④当x>﹣1时,y随x的增大而减小.
其中正确的有( )
A.4个 B.3个 C.2个 D.1个
【解答】解:①∵抛物线开口向上,且与y轴交于负半轴,
∴a>0,c<0,
∴ac<0,结论①正确;
②∵抛物线对称轴为直线x=1,
∴﹣=1,
∴b=﹣2a,
∵抛物线经过点(﹣1,0),
∴a﹣b+c=0,
∴a+2a+c=0,即3a+c=0,结论②正确;
③∵抛物线与x轴由两个交点,
∴b2﹣4ac>0,即4ac﹣b2<0,结论③正确;
④∵抛物线开口向上,且抛物线对称轴为直线x=1,
∴当x<1时,y随x的增大而减小,结论④错误;
故选:B.
三.二次函数图象上点的坐标特征(共2小题)
15.(2022•鄂州)如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象顶点为P(1,m),经过点A(2,1).有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有( )
A.2个 B.3个 C.4个 D.5个
【解答】解:①由抛物线的开口方向向下,
则a<0,故①正确;
②∵抛物线的顶点为P(1,m),
∴﹣=1,b=﹣2a,
∵a<0,
∴b>0,
∵抛物线与y轴的交点在正半轴,
∴c>0,
∴abc<0,故②错误;
③∵抛物线经过点A(2,1),
∴1=a•22+2b+c,即4a+2b+c=1,故③正确;
④∵抛物线的顶点为P(1,m),且开口方向向下,
∴x>1时,y随x的增大而减小,即④正确;
⑤∵a<0,
∴at2+bt﹣(a+b)
=at2﹣2at﹣a+2a
=at2﹣2at+a
=a(t2﹣2t+1)
=a(t﹣1)2≤0,
∴at2+bt≤a+b,则⑤正确
综上,正确的共有4个.
故选:C.
16.(2020•黄石)若二次函数y=a2x2﹣bx﹣c的图象,过不同的六点A(﹣1,n)、B(5,n﹣1)、C(6,n+1)、D(,y1)、E(2,y2)、F(4,y3),则y1、y2、y3的大小关系是( )
A.y1<y2<y3 B.y1<y3<y2 C.y2<y3<y1 D.y2<y1<y3
【解答】解:由题意
②﹣①得,24a2﹣6b=﹣1 ④,
③﹣②得,11a2﹣b=2 ⑤,
④﹣6×⑤得到,a2=,可得b=,
∴抛物线的对称轴x=﹣=,
∵D(,y1)、E(2,y2)、F(4,y3),
则y2<y1<y3,
故选:D.
解法二:
解:由二次函数y=a2x2﹣bx﹣c可知,抛物线开口向上,
∵A(﹣1,n)、B(5,n﹣1)、C(6,n+1)、
∴A点关于对称轴的对称点在5与6之间,
∴对称轴的取值范围为2<x<2.5,
∴y1>y2,
∵点D到对称轴的距离小于2.5﹣,点F到对称轴的距离大于4﹣2.5=1.5,
∴y2<y1<y3,
故选:D.
四.二次函数图象与几何变换(共1小题)
17.(2020•孝感)将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为( )
A.y=﹣x2﹣2 B.y=﹣x2+2 C.y=x2﹣2 D.y=x2+2
【解答】解:∵抛物线C1:y=x2﹣2x+3=(x﹣1)2+2,
∴抛物线C1的顶点为(1,2),
∵向左平移1个单位长度,得到抛物线C2,
∴抛物线C2的顶点坐标为(0,2),
∵抛物线C2与抛物线C3关于x轴对称,
∴抛物线C3的开口方向相反,顶点为(0,﹣2),
∴抛物线C3的解析式为y=﹣x2﹣2,
故选:A.
五.抛物线与x轴的交点(共3小题)
18.(2021•湖北)若抛物线y=x2+bx+c与x轴两个交点间的距离为4.对称轴为直线x=2,P为这条抛物线的顶点,则点P关于x轴的对称点的坐标是( )
A.(2,4) B.(﹣2,4) C.(﹣2,﹣4) D.(2,﹣4)
【解答】解:设抛物线y=x2+bx+c与x轴两个交点坐标为(x1,0),(x2,0),
∵抛物线y=x2+bx+c与x轴两个交点间的距离为4.对称轴为直线x=2,
∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=16,﹣=2,
∴(﹣)2﹣4×=16,b=﹣4,
解得c=0,
∴抛物线的解析式为y=x2﹣4x=(x﹣2)2﹣4,
∴顶点P的坐标为(2,﹣4),
∴点P关于x轴的对称点的坐标是(2,4),
故选:A.
19.(2020•随州)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴的正半轴交于点C,顶点为D,则下列结论:
①2a+b=0;
②2c<3b;
③当△ABC是等腰三角形时,a的值有2个;
④当△BCD是直角三角形时,a=﹣.
其中正确的有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:∵二次函数y=ax2+bx+c的图象与x轴交于A(﹣1,0),B(3,0)两点,
∴对称轴为直线x=﹣=1,
∴b=﹣2a,
∴2a+b=0,故①正确,
当x=﹣1时,0=a﹣b+c,
∴a+2a+c=0,
∴c=﹣3a,
∴2c=3b,故②错误;
∵二次函数y=ax2﹣2ax﹣3a,(a<0)
∴点C(0,﹣3a),
当BC=AB时,4=,
∴a=﹣,
当AC=BA时,4=,
∴a=﹣,
∴当△ABC是等腰三角形时,a的值有2个,故③正确;
∵二次函数y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,
∴顶点D(1,﹣4a),
∴BD2=4+16a2,BC2=9+9a2,CD2=a2+1,
若∠BDC=90°,可得BC2=BD2+CD2,
∴9+9a2=4+16a2+a2+1,
∴a=﹣,
若∠DCB=90°,可得BD2=CD2+BC2,
∴4+16a2=9+9a2+a2+1,
∴a=﹣1,
∴当△BCD是直角三角形时,a=﹣1或﹣,故④错误.
故选:B.
20.(2020•荆门)若抛物线y=ax2+bx+c(a>0)经过第四象限的点(1,﹣1),则关于x的方程ax2+bx+c=0的根的情况是( )
A.有两个大于1的不相等实数根
B.有两个小于1的不相等实数根
C.有一个大于1另一个小于1的实数根
D.没有实数根
【解答】解:由抛物线y=ax2+bx+c(a>0)经过第四象限的点(1,﹣1),
画出函数的图象如图:
由图象可知:关于x的方程ax2+bx+c=0的根的情况是有一个大于1另一个小于1的实数根,
故选:C.
六.图象法求一元二次方程的近似根(共1小题)
21.(2021•黄石)二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的自变量x与函数值y的部分对应值如下表:
x
…
﹣1
0
1
2
…
y
…
m
2
2
n
…
且当x=时,对应的函数值y<0.有以下结论:
①abc>0;②m+n<﹣;③关于x的方程ax2+bx+c=0的负实数根在﹣和0之间;④P1(t﹣1,y1)和P2(t+1,y2)在该二次函数的图象上,则当实数t>时,y1>y2.
其中正确的结论是( )
A.①② B.②③ C.③④ D.②③④
【解答】解:将(0,2),(1,2)代入y=ax2+bx+c得:
,解得,
∴二次函数为:y=ax2﹣ax+2,
∵当x=时,对应的函数值y<0,
∴a﹣a+2<0,
∴a<﹣,
∴﹣a>,即b>,
∴a<0,b>0,c>0,
∴abc<0,故①不正确;
∵x=﹣1时y=m,x=2时y=n,
∴m=a+a+2=2a+2,n=4a﹣2a+2=2a+2,
∴m+n=4a+4,
∵a<﹣,
∴m+n<﹣,故②正确;
∵抛物线过(0,2),(1,2),
∴抛物线对称轴为x=,
又∵当x=时,对应的函数值y<0,
∴根据对称性:当x=﹣时,对应的函数值y<0,
而x=0时y=2>0,
∴抛物线与x轴负半轴交点横坐标在﹣和0之间,
∴关于x的方程ax2+bx+c=0的负实数根在﹣和0之间,故③正确;
∵P1(t﹣1,y1)和P2(t+1,y2)在该二次函数的图象上,
∴y1=a(t﹣1)2﹣a(t﹣1)+2,y2=a(t+1)2﹣a(t+1)+2,
若y1>y2,则a(t﹣1)2﹣a(t﹣1)+2>a(t+1)2﹣a(t+1)+2,
即a(t﹣1)2﹣a(t﹣1)>a(t+1)2﹣a(t+1),
∵a<0,
∴(t﹣1)2﹣(t﹣1)<(t+1)2﹣(t+1),
解得t>,故④不正确,
故选:B.
第29章投影与视图(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北): 这是一份第29章投影与视图(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共23页。
第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北): 这是一份第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共26页。
第22章+二次函数(解答题压轴题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北): 这是一份第22章+二次函数(解答题压轴题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共49页。试卷主要包含了,他们称,,与y轴交于点C等内容,欢迎下载使用。