|试卷下载
终身会员
搜索
    上传资料 赚现金
    第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西)
    立即下载
    加入资料篮
    第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西)01
    第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西)02
    第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西)03
    还剩32页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西)

    展开
    这是一份第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共35页。试卷主要包含了在x轴上方的抛物线对称轴上运动,,与y轴交于点C,,对称轴为直线x=2,,顶点为B等内容,欢迎下载使用。

    第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西)
    一.二次函数综合题(共11小题)
    1.(2022•柳州)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C(0,5).
    (1)求b,c,m的值;
    (2)如图1,点D是抛物线上位于对称轴右侧的一个动点,且点D在第一象限内,过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,垂足为点F,当四边形DEFG的周长最大时,求点D的坐标;
    (3)如图2,点M是抛物线的顶点,将△MBC沿BC翻折得到△NBC,NB与y轴交于点Q,在对称轴上找一点P,使得△PQB是以QB为直角边的直角三角形,求出所有符合条件的点P的坐标.

    2.(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.
    (1)直接写出A,B,C三点的坐标;
    (2)求CP+PQ+QB的最小值;
    (3)过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.

    3.(2021•河池)在平面直角坐标系中,抛物线y=﹣(x﹣1)2+4与x轴交于A,B两点(A在B的右侧),与y轴交于点C.
    (1)求直线CA的解析式;
    (2)如图,直线x=m与抛物线在第一象限交于点D,交CA于点E,交x轴于点F,DG⊥CA于点G,若E为GA的中点,求m的值.
    (3)直线y=nx+n与抛物线交于M(x1,y1),N(x2,y2)两点,其中x1<x2.若x2﹣x1>3且y2﹣y1>0,结合函数图象,探究n的取值范围.

    4.(2021•百色)已知O为坐标原点,直线l:y=﹣x+2与x轴、y轴分别交于A、C两点,点B(4,2)关于直线l的对称点是点E,连接EC交x轴于点D.
    (1)求证:AD=CD;
    (2)求经过B、C、D三点的抛物线的函数表达式;
    (3)当x>0时,抛物线上是否存在点P,使S△PBC=S△OAE?若存在,求点P的坐标;若不存在,说明理由.

    5.(2021•贵港)如图,已知抛物线y=ax2+bx+c与x轴相交于A(﹣3,0),B两点,与y轴相交于点C(0,2),对称轴是直线x=﹣1,连接AC.
    (1)求该抛物线的表达式;
    (2)若过点B的直线l与抛物线相交于另一点D,当∠ABD=∠BAC时,求直线l的表达式;
    (3)在(2)的条件下,当点D在x轴下方时,连接AD,此时在y轴左侧的抛物线上存在点P,使S△BDP=S△ABD.请直接写出所有符合条件的点P的坐标.

    6.(2021•贺州)如图,抛物线y=x2+bx+c与x轴交于A、B两点,且A(﹣1,0),对称轴为直线x=2.
    (1)求该抛物线的函数表达式;
    (2)直线l过点A且在第一象限与抛物线交于点C.当∠CAB=45°时,求点C的坐标;
    (3)点D在抛物线上与点C关于对称轴对称,点P是抛物线上一动点,令P(xP,yP),当1≤xP≤a,1≤a≤5时,求△PCD面积的最大值(可含a表示).

    7.(2021•柳州)在平面直角坐标系xOy中,已知抛物线:y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣).
    (1)求抛物线的函数解析式;
    (2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BE⊥OD,垂足为E,若BE=2OE,求点D的坐标;
    (3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记△BMN的面积为S1,△ABN的面积为S2,求的最大值.

    8.(2020•贺州)如图,抛物线y=a(x﹣2)2﹣2与y轴交于点A(0,2),顶点为B.
    (1)求该抛物线的解析式;
    (2)若点P(t,y1),Q(t+3,y2)都在抛物线上,且y1=y2,求P,Q两点的坐标;
    (3)在(2)的条件下,若点C是线段QB上一动点,经过点C的直线y=﹣x+m与y轴交于点D,连接DQ,DB,求△BDQ面积的最大值和最小值.

    9.(2020•广西)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,已知B(3,0),C(0,﹣3),连接BC,点P是抛物线上的一个动点,点N是对称轴上的一个动点.
    (1)求该抛物线的函数解析式.
    (2)当△PAB的面积为8时,求点P的坐标.
    (3)若点P在直线BC的下方,当点P到直线BC的距离最大时,在抛物线上是否存在点Q,使得以点P,C,N,Q为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.

    10.(2020•贵港)如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣6,0),B(1,0),与y轴相交于点C,直线l⊥AC,垂足为C.
    (1)求该抛物线的表达式;
    (2)若直线l与该抛物线的另一个交点为D,求点D的坐标;
    (3)设动点P(m,n)在该抛物线上,当∠PAC=45°时,求m的值.

    11.(2020•桂林)如图,已知抛物线y=a(x+6)(x﹣2)过点C(0,2),交x轴于点A和点B(点A在点B的左侧),抛物线的顶点为D,对称轴DE交x轴于点E,连接EC.
    (1)直接写出a的值,点A的坐标和抛物线对称轴的表达式;
    (2)若点M是抛物线对称轴DE上的点,当△MCE是等腰三角形时,求点M的坐标;
    (3)点P是抛物线上的动点,连接PC,PE,将△PCE沿CE所在的直线对折,点P落在坐标平面内的点P′处.求当点P′恰好落在直线AD上时点P的横坐标.


    第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西)
    参考答案与试题解析
    一.二次函数综合题(共11小题)
    1.(2022•柳州)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C(0,5).
    (1)求b,c,m的值;
    (2)如图1,点D是抛物线上位于对称轴右侧的一个动点,且点D在第一象限内,过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,垂足为点F,当四边形DEFG的周长最大时,求点D的坐标;
    (3)如图2,点M是抛物线的顶点,将△MBC沿BC翻折得到△NBC,NB与y轴交于点Q,在对称轴上找一点P,使得△PQB是以QB为直角边的直角三角形,求出所有符合条件的点P的坐标.

    【解答】解:(1)把A(﹣1,0),C(0,5)代入y=﹣x2+bx+c,
    得,
    解得.
    ∴这个抛物线的解析式为:y=﹣x2+4x+5,
    令y=0,则﹣x2+4x+5=0,解得x1=5,x2=﹣1,
    ∴B(5,0),
    ∴m=5;

    (2)∵抛物线的解析式为:y=﹣x2+4x+5=﹣(x﹣2)2+9,
    ∴对称轴为x=2,
    设D(x,﹣x2+4x+5),
    ∵DE∥x轴,
    ∴E(4﹣x,﹣x2+4x+5),
    ∵过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,
    ∴四边形DEFG是矩形,
    ∴四边形DEFG的周长=2(﹣x2+4x+5)+2(x﹣4+x)=﹣2x2+12x+2=﹣2(x﹣3)2+20,
    ∴当x=3时,四边形DEFG的周长最大,
    ∴当四边形DEFG的周长最大时,点D的坐标为(3,8);

    (3)过点C作CH⊥对称轴于H,过点N作NK⊥y轴于K,

    ∴∠NKC=∠MHC=90°,
    由翻折得CN=CM,∠BCN=∠BCM,
    ∵B(5,0),C(0,5).
    ∴OB=OC,
    ∴∠OCB=∠OBC=45°,
    ∵CH⊥对称轴于H,
    ∴CH∥x轴,
    ∴∠BCH=45°,
    ∴∠BCH=∠OCB,
    ∴∠NCK=∠MCH,
    ∴△MCH≌△NCK(AAS),
    ∴NK=MH,CK=CH,
    ∵抛物线的解析式为:y=﹣x2+4x+5=﹣(x﹣2)2+9,
    ∴对称轴为x=2,M(2,9),
    ∴MH=9﹣5=4,CH=2,
    ∴NK=MH=4,CK=CH=2,
    ∴N(﹣4,3),
    设直线BN的解析式为y=mx+n,
    ∴,解得,
    ∴直线BN的解析式为y=﹣x+,
    ∴Q(0,),
    设P(2,p),
    ∴PQ2=22+(p﹣)2=p2﹣p+,
    BP2=(5﹣2)2+p2=9+p2,
    BQ2=52+()2=25+,
    分两种情况:
    ①当∠BQP=90°时,BP2=PQ2+BQ2,
    ∴9+p2=p2﹣p++25+,解得p=,
    ∴点P的坐标为(2,);
    ②当∠QBP=90°时,P′Q2=BP′2+BQ2,
    ∴p2﹣p+=9+p2+25+,解得p=﹣9,
    ∴点P′的坐标为(2,﹣9).
    综上,所有符合条件的点P的坐标为(2,),(2,﹣9).
    2.(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.
    (1)直接写出A,B,C三点的坐标;
    (2)求CP+PQ+QB的最小值;
    (3)过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.

    【解答】解:(1)在y=﹣x2+3x+4中,令x=0得y=4,令y=0得x=﹣1或x=4,
    ∴A(﹣1,0),B(4,0),C(0,4);
    (2)将C(0,4)向下平移至C',使CC'=PQ,连接BC'交抛物线的对称轴l于Q,如图:

    ∵CC'=PQ,CC'∥PQ,
    ∴四边形CC'QP是平行四边形,
    ∴CP=C'Q,
    ∴CP+PQ+BQ=C'Q+PQ+BQ=BC'+PQ,
    ∵B,Q,C'共线,
    ∴此时CP+PQ+BQ最小,最小值为BC'+PQ的值,
    ∵C(0,4),CC'=PQ=1,
    ∴C'(0,3),
    ∵B(4,0),
    ∴BC'==5,
    ∴BC'+PQ=5+1=6,
    ∴CP+PQ+BQ最小值为6;
    (3)如图:

    由在y=﹣x2+3x+4得抛物线对称轴为直线x=﹣=,
    设Q(,t),则P(,t+1),M(0,t+1),N(,0),
    ∵B(4,0),C(0,4);
    ∴BN=,QN=t,PM=,CM=|t﹣3|,
    ∵∠CMP=∠QNB=90°,
    ∴△CPM和△QBN相似,只需=或=,
    ①当=时,=,
    解得t=或t=,
    ∴Q(,)或(,);
    ②当=时,=,
    解得t=或t=(舍去),
    ∴Q(,),
    综上所述,Q的坐标是(,)或(,)或(,).
    3.(2021•河池)在平面直角坐标系中,抛物线y=﹣(x﹣1)2+4与x轴交于A,B两点(A在B的右侧),与y轴交于点C.
    (1)求直线CA的解析式;
    (2)如图,直线x=m与抛物线在第一象限交于点D,交CA于点E,交x轴于点F,DG⊥CA于点G,若E为GA的中点,求m的值.
    (3)直线y=nx+n与抛物线交于M(x1,y1),N(x2,y2)两点,其中x1<x2.若x2﹣x1>3且y2﹣y1>0,结合函数图象,探究n的取值范围.

    【解答】解:(1)在y=﹣(x﹣1)2+4中,令x=0得y=3,令y=0得x=﹣1或3,
    ∴A(3,0),B(﹣1,0),C(0,3),
    设直线CA的解析式为y=kx+b,则,
    解得,
    ∴直线CA的解析式为y=﹣x+3;
    (2)∵直线x=m与抛物线在第一象限交于点D,交CA于点E,交x轴于点F,
    ∴D(m,﹣(m﹣1)2+4),且0<m<3,E(m,﹣m+3),F(m,0),
    ∴AF=3﹣m,DE=﹣(m﹣1)2+4﹣(﹣m+3)=﹣m2+3m,
    ∵A(3,0),C(0,3),
    ∴∠EAF=45°,△EAF是等腰直角三角形,
    ∴AE=AF=3﹣m,∠DEG=∠AEF=45°,
    ∴△DEG是等腰直角三角形,
    ∴DE=GE,
    ∵E为GA的中点,
    ∴GE=AE=3﹣m,
    ∴﹣m2+3m=(3﹣m),
    解得m=2或m=3,
    ∵m=3时,D与A重合,舍去,
    ∴m=2;
    (3)由得或,
    ①若3﹣n>﹣1,即n<4,如图:

    ∵x2﹣x1>3且y2﹣y1>0,
    ∴3﹣n﹣(﹣1)>3,且﹣n2+4n﹣0>0,
    解得0<n<1;
    ②若3﹣n<﹣1,即n>4,同理可得:
    ﹣1﹣(3﹣n)>3且0﹣(﹣n2+4n)>0,
    解得n>7,
    综上所述,n的取值范围是0<n<1或n>7.
    4.(2021•百色)已知O为坐标原点,直线l:y=﹣x+2与x轴、y轴分别交于A、C两点,点B(4,2)关于直线l的对称点是点E,连接EC交x轴于点D.
    (1)求证:AD=CD;
    (2)求经过B、C、D三点的抛物线的函数表达式;
    (3)当x>0时,抛物线上是否存在点P,使S△PBC=S△OAE?若存在,求点P的坐标;若不存在,说明理由.

    【解答】(1)证明:∵y=﹣x+2与x轴、y轴分别交于A、C两点,
    ∴A(4,0),C(0,2),
    由对称得∠ACD=∠ACB,
    ∵B(4,2),
    ∴四边形OABC是矩形,
    ∴OA∥BC,
    ∴∠BCA=∠OAC,
    ∴∠ACD=∠OAC,
    ∴AD=CD;

    (2)解:设OD=m,由对称可得CE=BC=4,AE=AB=OC=2,∠AED=∠B=90°,
    ∴CD=AD=4﹣m,
    在Rt△OCD中,OD2+OC2=CD2,
    ∴m2+22=(4﹣m)2,
    ∴m=,
    ∴D(,0),
    设经过B、C、D三点的抛物线的函数表达式为:y=ax2+bx+c,
    把B(4,2),C(0,2),D(,0)代入得:

    解得:.
    ∴经过B,C,D三点的抛物线的函数表达式为:y=x2﹣x+2;

    (3)解:存在,
    过点E作EM⊥x轴于M,

    ∵ED=EC﹣CD=EC﹣AD=OD=,
    ∴S△AED=AE•DE=AD•EM,
    ∴×2×=×(4﹣)EM,
    ∴EM=,
    设△PBC中BC边上的高为h,
    ∵S△PBC=S△OAE,
    ∴×OA•EM=BC•h,
    ∴××4×=×4h,
    ∴h=2,
    ∵C(0,2),B(4,2),
    ∴点P的纵坐标为0或4,
    ①y=0时,x2﹣x+2=0,
    解得:x1=,x2=;
    ②y=4时,x2﹣x+2=4,
    解得:x3=,x4=(舍去),
    ∴存在,点P的坐标为(,0)或(,0)或(,4).
    5.(2021•贵港)如图,已知抛物线y=ax2+bx+c与x轴相交于A(﹣3,0),B两点,与y轴相交于点C(0,2),对称轴是直线x=﹣1,连接AC.
    (1)求该抛物线的表达式;
    (2)若过点B的直线l与抛物线相交于另一点D,当∠ABD=∠BAC时,求直线l的表达式;
    (3)在(2)的条件下,当点D在x轴下方时,连接AD,此时在y轴左侧的抛物线上存在点P,使S△BDP=S△ABD.请直接写出所有符合条件的点P的坐标.

    【解答】解:(1)∵抛物线的对称轴为x=﹣1,
    ∴﹣=﹣1,
    ∴b=2a,
    ∵点C的坐标为(0,2),
    ∴c=2,
    ∴抛物线的解析式为y=ax2+2ax+2,
    ∵点A(﹣3,0)在抛物线上,
    ∴9a﹣6a+2=0,
    ∴a=﹣,
    ∴b=2a=﹣,
    ∴抛物线的解析式为y=﹣x2﹣x+2;

    (2)Ⅰ、当点D在x轴上方时,如图1,
    记BD与AC的交点为点E,
    ∵∠ABD=∠BAC,
    ∴AE=BE,
    ∵直线x=﹣1垂直平分AB,
    ∴点E在直线x=﹣1上,
    ∵点A(﹣3,0),C(0,2),
    ∴直线AC的解析式为y=x+2,
    当x=﹣1时,y=,
    ∴点E(﹣1,),
    ∵点A(﹣3,0)点B关于x=﹣1对称,
    ∴B(1,0),
    ∴直线BD的解析式为y=﹣x+,
    即直线l的解析式为y=﹣x+;

    Ⅱ、当点D在x轴下方时,如图2,
    ∵∠ABD=∠BAC,
    ∴BD∥AC,
    由Ⅰ知,直线AC的解析式为y=x+2,
    ∴直线BD的解析式为y=x﹣,
    即直线l的解析式为y=x﹣;
    综上,直线l的解析式为y=﹣x+或y=x﹣;

    (3)由(2)知,直线BD的解析式为y=x﹣①,
    ∵抛物线的解析式为y=﹣x2﹣x+2②,
    ∴或,
    ∴D(﹣4,﹣),
    ∴S△ABD=AB•|yD|=×4×=,
    ∵S△BDP=S△ABD,
    ∴S△BDP=×=10,
    ∵点P在y轴左侧的抛物线上,
    ∴设P(m,﹣m2﹣m+2)(m<0),
    过P作y轴的平行线交直线BD于F,
    ∴F(m,m﹣),
    ∴PF=|﹣m2﹣m+2﹣(m﹣)|=|m2+2m﹣|,
    ∴S△BDP=PF•(xB﹣xD)=×|m2+2m﹣|×5=10,
    ∴m=﹣5或m=2(舍)或m=﹣1或m=﹣2,
    ∴P(﹣5,﹣8)或(﹣1,)或(﹣2,2).



    6.(2021•贺州)如图,抛物线y=x2+bx+c与x轴交于A、B两点,且A(﹣1,0),对称轴为直线x=2.
    (1)求该抛物线的函数表达式;
    (2)直线l过点A且在第一象限与抛物线交于点C.当∠CAB=45°时,求点C的坐标;
    (3)点D在抛物线上与点C关于对称轴对称,点P是抛物线上一动点,令P(xP,yP),当1≤xP≤a,1≤a≤5时,求△PCD面积的最大值(可含a表示).

    【解答】解:(1)抛物线过A(﹣1,0),对称轴为x=2,
    ∴,
    解得,
    ∴抛物线表达式为y=x2﹣4x﹣5;
    (2)过点C作CE⊥x轴于点E,

    ∵∠CAB=45°,
    ∴AE=CE,
    设点C的横坐标为xc,则纵坐标为yc=xc+1,
    ∴C(xc,xc+1),
    代入y=x2﹣4x﹣5得,
    xc+1=﹣4xc﹣5,
    解得xc=﹣1(舍去),xc=6,
    ∴yc=7,
    ∴点C的坐标是(6,7);
    (3)由(2)得C的坐标是(6,7),
    ∵对称轴x=2,
    ∴点D的坐标是(﹣2,7),
    ∴CD=8,
    ∵CD与x轴平行,点P在x轴下方,
    设△PCD以CD为底边的高为h,
    则h=|yp|+7,
    ∴当|yp|取最大值时,△PCD的面积最大,
    ∵1≤xp≤a,1≤a≤5,
    ①当1≤a<2时,1≤xp≤a,此时y=x2﹣4x﹣5在1≤xp≤a上y随x的增大而减小,
    ∴|yp|max=|a2﹣4a﹣5|=5+4a﹣a2,
    ∴h=|yp|+7=12+4a﹣a2,
    ∴△PCD的最大面积为:
    Smax=×CD×h=×8×(12+4a﹣a2)=48+16a﹣4a2;
    ②当2≤a≤5时,此时y=x2﹣4x﹣5的对称轴x=2含于1≤xp<a内,
    ∴|yp|max=|22﹣4×2﹣5|=9,
    ∴h=9+7=16,
    ∴△PCD的最大面积为Smax=×CD×h=×8×16=64,
    综上所述:当1≤a<2时,△PCD的最大面积为48+16a﹣4a2;
    当2≤a≤5时,△PCD的最大面积为64.
    7.(2021•柳州)在平面直角坐标系xOy中,已知抛物线:y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣).
    (1)求抛物线的函数解析式;
    (2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BE⊥OD,垂足为E,若BE=2OE,求点D的坐标;
    (3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记△BMN的面积为S1,△ABN的面积为S2,求的最大值.

    【解答】解:(1)依题意,设y=a(x+1)(x﹣3),
    代入C(0,﹣)得:a•1•(﹣3)=﹣,
    解得:a=,
    ∴y=(x+1)(x﹣3)=x2﹣x﹣;
    (2)∵BE=2OE,
    设OE为x,BE=2x,
    由勾股定理得:OE2+BE2=OB2,
    x2+4x2=9,
    解得:x1=,x2=﹣(舍),
    ∴OE=,BE=,
    过点E作TG平行于OB,T在y轴上,过B作BG⊥TG于G,

    ∴△ETO∽△OEB,
    ∴==,
    ∴OE2=OB•TE,
    ∴TE==,
    ∴OT==,
    ∴E(,﹣),
    ∴直线OE的解析式为y=﹣2x,
    ∵OE的延长线交抛物线于点D,
    ∴,
    解得:x1=1,x2=﹣3(舍),
    当x=1时,y=﹣2,
    ∴D(1,﹣2);
    (3)如图所示,延长BC于点F,AF∥y轴,过A点作AH⊥BF于点H,作MT∥y轴交BF于点T,过M点作MG⊥BF于点J,

    ∵AF∥MT,
    ∴∠AFH=∠MTJ,
    ∵AH⊥BF,MJ⊥BF,
    ∴∠AHF=∠MJT=90°,
    ∴△AFH∽△MJT,
    ∴=,
    ∵S1=NB•MJ,S2=NB•AH,
    ∴==,
    设直线BC的解析式为y=kx+b,将B,C两点代入得,

    解得:,
    ∴直线BC的解析式为y=x﹣,
    当x=﹣1时,y=•(﹣1)﹣=﹣2,
    ∴F(﹣1,﹣2),
    ∴AF=2,
    设M(x,x2﹣x﹣),
    ∴MT=x﹣﹣(x2﹣x﹣)=﹣(x﹣)2+,
    ∴a=﹣<0,
    ∴MTmax=,
    ∴=====.
    8.(2020•贺州)如图,抛物线y=a(x﹣2)2﹣2与y轴交于点A(0,2),顶点为B.
    (1)求该抛物线的解析式;
    (2)若点P(t,y1),Q(t+3,y2)都在抛物线上,且y1=y2,求P,Q两点的坐标;
    (3)在(2)的条件下,若点C是线段QB上一动点,经过点C的直线y=﹣x+m与y轴交于点D,连接DQ,DB,求△BDQ面积的最大值和最小值.

    【解答】解:(1)将A(0,2)代入到抛物线解析式中,得,
    4a﹣2=2,
    解得,a=1,
    ∴抛物线解析式为y=(x﹣2)2﹣2;
    (2)∵y1=y2,
    ∴(t﹣2)2﹣2=(t+3﹣2)2﹣2,
    解得,,
    ∴P(),Q;
    (3)由题可得,顶点B为(2,﹣2),
    将直线y=﹣x+m进行平移,
    当直线经过B点时,﹣2=﹣2+m,
    解得m=0,
    当直线经过点Q时,,
    解得m=,
    ∵经过点C直线y=﹣x+m与y轴交于点D,
    ∴D为(0,m),
    ∵点C是线段QB上一动点,
    ∴,
    延长QB交y轴于点E,设直线QB的解析式为y=kx+b,
    代入点Q、B坐标得,
    ,解得,
    ∴QB的解析式为:,
    令x=0,则y=﹣5,
    ∴E(0,﹣5),
    由图可得,
    S△BDQ=S△DEQ﹣S△DEB,
    ∴=,
    ∵,
    ∴当m=0时,S△BDQ最小值为,
    当m=时,S△BDQ最大值为.

    9.(2020•广西)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,已知B(3,0),C(0,﹣3),连接BC,点P是抛物线上的一个动点,点N是对称轴上的一个动点.
    (1)求该抛物线的函数解析式.
    (2)当△PAB的面积为8时,求点P的坐标.
    (3)若点P在直线BC的下方,当点P到直线BC的距离最大时,在抛物线上是否存在点Q,使得以点P,C,N,Q为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.

    【解答】解:(1)∵抛物线y=x2+bx+c经过点B(3,0),C(0,﹣3),
    ∴,
    解得:,
    ∴抛物线的解析式为y=x2﹣2x﹣3;
    (2)∵抛物线y=x2﹣2x﹣3与x轴交于A,B两点,
    ∴0=x2﹣2x﹣3,
    ∴x1=﹣1,x2=3,
    ∴点A(﹣1,0),
    ∴AB=4,
    设点P(p,p2﹣2p﹣3),
    ∵△PAB的面积为8,
    ∴×4×|p2﹣2p﹣3|=8,
    ∴p2﹣2p﹣3=4或p2﹣2p﹣3=﹣4,
    ∴p1=2+1,p2=﹣2+1,p3=1,
    ∴点P坐标为(2+1,4)或(﹣2+1,4)或(1,﹣4);
    (3)如图1,过点P作PE∥y轴,交BC于E,

    ∵点B(3,0),C(0,﹣3),
    ∴直线BC的解析式为y=x﹣3,
    设点P(a,a2﹣2a﹣3),则点E(a,a﹣3),
    ∴PE=a﹣3﹣(a2﹣2a﹣3)=﹣a2+3a,
    ∴S△BCP=×(﹣a2+3a)×3=﹣(a﹣)2+,
    ∴当a=时,S△BCP有最大值,即点P到直线BC的距离最大,
    此时点P(,﹣),
    设点N(1,n),点Q(m,m2﹣2m﹣3),
    若CP为边,CN为边时,则CQ与NP互相平分,
    ∴,
    ∴m=,
    ∴点Q(,﹣),
    若CP为边,CQ为边时,则CN与PQ互相平分,
    ∴=,
    ∴m=﹣,
    ∴点Q(﹣,﹣),
    若CP为对角线,则CP与NQ互相平分,
    ∴,
    ∴m=,
    ∴点Q(,﹣),
    综上所述:点Q坐标为(,﹣)或(﹣,﹣)或(,﹣).
    10.(2020•贵港)如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣6,0),B(1,0),与y轴相交于点C,直线l⊥AC,垂足为C.
    (1)求该抛物线的表达式;
    (2)若直线l与该抛物线的另一个交点为D,求点D的坐标;
    (3)设动点P(m,n)在该抛物线上,当∠PAC=45°时,求m的值.

    【解答】解:(1)将点A、B的坐标代入抛物线的表达式得,解得,
    故抛物线的表达式为y=x2+x﹣3①;

    (2)过点D作DE⊥y轴于点E,
    而直线l⊥AC,AO⊥y轴,

    ∴∠CDE+∠DCE=90°,∠DCE+∠OCA=90°,
    ∴∠CDE=∠OCA,
    ∵∠AOC=∠CED=90°,
    ∴△CED∽△AOC,则,
    而点A、C的坐标分别为(﹣6,0)、(0,﹣3),则AO=6,OC=3,设点D(x,x2+x﹣3),
    则DE=﹣x,CE=﹣x2﹣x,
    则=,解得x=0(舍去)或﹣1,
    当x=﹣1时,y=x2+x﹣3=﹣5,
    故点D的坐标为(﹣1,﹣5);

    (3)①当点P在x轴的上方时,
    由点C、D的坐标得,直线l的表达式为y=2x﹣3,

    延长AP交直线l于点M,设点M(t,2t﹣3),
    ∵∠PAC=45°,直线l⊥AC,
    ∴△ACM为等腰直角三角形,则AC=CM,
    则62+32=(t﹣0)2+(2t﹣3+3)2,解得t=3,
    故点M的坐标为(3,3),
    由点A、M的坐标得,直线AM的表达式为y=x+2②,
    联立①②并解得x=﹣6(舍去)或,
    故点P的横坐标m=;
    ②当点P在x轴的下方时,
    同理可得x=﹣6(舍去)或x=﹣5,
    故m=﹣5,
    综上,m=﹣5或.
    11.(2020•桂林)如图,已知抛物线y=a(x+6)(x﹣2)过点C(0,2),交x轴于点A和点B(点A在点B的左侧),抛物线的顶点为D,对称轴DE交x轴于点E,连接EC.
    (1)直接写出a的值,点A的坐标和抛物线对称轴的表达式;
    (2)若点M是抛物线对称轴DE上的点,当△MCE是等腰三角形时,求点M的坐标;
    (3)点P是抛物线上的动点,连接PC,PE,将△PCE沿CE所在的直线对折,点P落在坐标平面内的点P′处.求当点P′恰好落在直线AD上时点P的横坐标.

    【解答】解:(1)∵抛物线y=a(x+6)(x﹣2)过点C(0,2),
    ∴2=a(0+6)(0﹣2),
    ∴a=﹣,
    ∴抛物线的解析式为y=﹣(x+6)(x﹣2)=﹣(x+2)2+,
    ∴抛物线的对称轴为直线x=﹣2;
    针对于抛物线的解析式为y=﹣(x+6)(x﹣2),
    令y=0,则﹣(x+6)(x﹣2)=0,
    ∴x=2或x=﹣6,
    ∴A(﹣6,0);

    (2)如图1,由(1)知,抛物线的对称轴为x=﹣2,
    ∴E(﹣2,0),
    ∵C(0,2),
    ∴OC=OE=2,
    ∴CE=OC=2,∠CED=45°,
    ∵△CME是等腰三角形,
    ∴①当ME=MC时,
    ∴∠ECM=∠CED=45°,
    ∴∠CME=90°,
    ∴M(﹣2,2),
    ②当CE=CM时,
    ∴MM1=CM=2,
    ∴EM1=4,
    ∴M1(﹣2,4),
    ③当EM=CE时,
    ∴EM2=EM3=2,
    ∴M2(﹣2,﹣2),M3(﹣2,2),
    即满足条件的点M的坐标为(﹣2,2)或(﹣2,4)或(﹣2,2)或(﹣2,﹣2);

    (3)如图2,
    由(1)知,抛物线的解析式为y=﹣(x+6)(x﹣2)=﹣(x+2)2+,
    ∴D(﹣2,),
    令y=0,则(x+6)(x﹣2)=0,
    ∴x=﹣6或x=2,
    ∴点A(﹣6,0),
    ∴直线AD的解析式为y=x+4,
    过点P作PQ⊥x轴于Q,过点P'作P'Q'⊥DE于Q',
    ∴∠EQ'P'=∠EQP=90°,
    由(2)知,∠CED=∠CEB=45°,
    由折叠知,EP'=EP,∠CEP'=∠CEP,
    ∴△PQE≌△P'Q'E(AAS),
    ∴PQ=P'Q',EQ=EQ',
    设点P(m,n),
    ∴OQ=m,PQ=n,
    ∴P'Q'=n,EQ'=QE=m+2,
    ∴点P'(n﹣2,2+m),
    ∵点P'在直线AD上,
    ∴2+m=(n﹣2)+4①,
    ∵点P在抛物线上,
    ∴n=﹣(m+6)(m﹣2)②,
    联立①②解得,m=或m=,
    即点P的横坐标为或.


    相关试卷

    第22章二次函数(解答题中档题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西): 这是一份第22章二次函数(解答题中档题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共19页。试卷主要包含了之间的函数图象如图所示,,顶点为M等内容,欢迎下载使用。

    第22章二次函数(解答题压轴题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西): 这是一份第22章二次函数(解答题压轴题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西),共25页。试卷主要包含了,与y轴交于点C,,与x轴的正半轴交于点C,,顶点为D,,则该抛物线的解析式可以表示为等内容,欢迎下载使用。

    第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江): 这是一份第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江),共42页。试卷主要包含了,连接AD,BC,BD,,与y轴交于点C,综合与探究,,与x轴交于另一点B,顶点为D等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第22章二次函数(解答题提升题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(广西)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map