湘教版八年级上册第2章 三角形2.1 三角形第1课时学案设计
展开第2章 三角形
2.1 三角形
第1课时 三角形的有关概念及三边关系
1.通过具体实例,进一步认识三角形的概念及其基本要素.
2.学会三角形的表示及根据“是否有边相等”对三角形进行的分类.
3.掌握三角形三条边之间的关系.(重点)
知识模块一 探究三角形中的基本概念
【自主学习】
阅读教材P42,完成下面的填空.
1.__由不在同一条直线上的三条线段首尾顺次连接而成的图形__叫作三角形.
如图:用线段连接不在同一直线上的三点D、E、F所组成的图形叫作__三角形__,记用__△DEF__,它的三个顶点分别是点__D__、点__E__、点__F__.它的三个内角分别是__∠D__、__∠__E__、__∠F__.
2.其中,__两条边相等__的三角形叫作等腰三角形,__三边都相等__的三角形叫作等边三角形.
知识模块二 三角形三边的关系
【合作探究】
如图,请量出线段AB、BC、AC的长度(精确到1 mm),根据测量结果填空(选填“>”或“<”)
AB+BC__>__AC,BC+AC__>__AB,AB+AC__>__BC.
AB-BC__<__AC,BC-AC__<__AB,AB-AC__<__BC.
归纳:三角形任意两边之和__大于__第三边,三角形任意两边之差__小于__第三边.
【自主学习】
1.教材P43做一做.
2.阅读教材P43例1.
练习:有下列长度的三条线段能否组成三角形?为什么?
(1)4 cm、5 cm、10 cm; (2)5 cm、6 cm、11 cm;
(3)6 cm、7 cm、12 cm.
解:(1)因为4+5<10,所以它们不能组成三角形;(2)因为5+6=11,所以它们不能组成三角形;(3)因为6+7>12,所以它们能组成三角形.
活动1 小组讨论
例 如图,D是△ABC的边AC上一点,AD=BD,试判断AC与BC的大小.
解:在△BDC中,有BD+DC>BC(三角形的任意两边之和大于第三边).
又因为AD=BD,
则BD+DC=AD+DC=AC,
所以AC>BC.
活动2 跟踪训练
1.现有两根木棒,它们的长度分别为20 cm和30 cm,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取(B)
A.10 cm的木棒 B.20 cm的木棒
C.50 cm的木棒 D.60 cm的木棒
2.看图填空.
(1)如图中共有__4__个三角形,它们是__△ABC、△EBG、△AEF、△CGF__;
(2)△BGE的三个顶点分别是__B、G、E__,三条边分别是__BG、EG、BE__,三个角分别是__∠B、∠BEG、∠BGE__;
(3)△AEF中,顶点A所对的边是__EF__;边AF所对的顶点是__E__;
(4)∠ACB是△__ACB__的内角,∠ACB的对边是__AB__.
3.用一根长为18厘米的细铁丝围成一个等腰三角形.
(1)如果腰长是底边的2倍,那么各边的长是多少?
(2)能围成有一边的长为4厘米的等腰三角形吗?
解:(1)设底边长为x厘米,则腰长为2x厘米.则x+2x+2x=18.解得x=3.6.所以三边长分别为3.6厘米、7.2厘米、7.2厘米;
(2)①当4厘米长为底边,设腰长为x厘米,则4+2x=18.解得x=7.所以等腰三角形的三边长为7厘米、7厘米、4厘米;②当4厘米长为腰长,设底边长为x厘米,可得4×2+x=18.解得x=10.因为4+4<10,所以此时不能构成三角形.即可围成等腰三角形,且三边长分别为7厘米、7厘米和4厘米.
活动3 课堂小结
1.由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫作三角形.三角形的边、角、顶点及表示方法.
2.三角形的分类:按边和角分类.
3.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边.
华师大版八年级上册1 直角三角形三边的关系第1课时学案设计: 这是一份华师大版八年级上册1 直角三角形三边的关系第1课时学案设计,共6页。学案主要包含了知识链接,新知预习等内容,欢迎下载使用。
初中数学湘教版八年级上册第2章 三角形2.2 命题与证明第1课时导学案: 这是一份初中数学湘教版八年级上册第2章 三角形2.2 命题与证明第1课时导学案,共4页。学案主要包含了自主学习,合作探究等内容,欢迎下载使用。
湘教版八年级上册2.2 命题与证明第1课时学案: 这是一份湘教版八年级上册2.2 命题与证明第1课时学案,共4页。学案主要包含了自主学习,合作探究等内容,欢迎下载使用。