初中数学湘教版八年级上册第2章 三角形2.1 三角形第3课时导学案
展开第3课时 三角形内角和定理
1.知道三角形的内角和是180°,能应用此性质解决相关问题.
2.知道三角形的分类,并会用数学符号表示直角三角形.
3.会找一个三角形的外角,能应用三角形外角的性质解决相关问题.(重点)
知识回顾:
如图,在图1中,已知过点A的直线DE∥BC,那么∠B=∠__BAD__,∠C=∠__CAE__.在图2中,已知过点C的直线CE∥BA,那么∠B=∠__ECD__,∠A=∠__ACE__.
知识模块一 探究三角形的内角和定理及三角形中的相关概念
【合作探究】
你能否由以上两个图形推出三角形的内角和为180°呢?
如图1,由∠BAD+∠BAC+∠CAE=180°,知∠B+∠BAC+∠C=180°,从而得出结论:三角形的内角和等于__180°__.
由于三角形内角和等于180°,而三角形的外角与它相邻的内角和也为180°,由此可得:三角形的一个外角等于与它不相邻的两个内角的__和__.
【自主学习】
1.阅读教材P46~P48,完成下面的填空:
(1)__三个角都是锐角__的三角形叫锐角三角形;__有一个角是直角__的三角形叫直角三角形;__有一个角是钝角__的三角形叫钝角三角形.
(2)直角三角形可以用符号“__Rt△__”表示,直角三角形ABC可以写成__Rt△ABC__,在直角三角形中,夹直角的两边叫作__直角边__,直角的对边叫作__斜边__.两条直角边相等的直角三角形叫作__等腰直角三角形__.
(3)三角形的一边与另一边的延长线所组成的角,叫作三角形的__外角__.
2.(1)在△ABC中,∠A=90°,∠B=30°,则∠C=__60°__;∠B+∠C=__90°__.
(2)在△ABC中,∠C=90°,∠B=60°,则∠A=__30°__;∠B+∠A=__90°__.
(3)在△ABC中,∠B=90°,∠C=85°,则∠A=__5°__;∠C+∠A=__90°__.
知识模块二 运用三角形内角和定理和外角和的性质解决问题
【自主学习】
阅读教材P46例3.
【合作探究】
如图,直线DE分别交△ABC的边AB,AC于点D,E,若∠B=67°,∠C=74°,∠AED=48°,求∠BDE的度数.
解:∵∠B=67°,∠C=74°,
∴∠A=180°-∠B-∠C=180°-67°-74°=39°.
又∵∠AED=48°,
∴∠BDE=∠A+∠AED=39°+48°=87°.
活动1 小组讨论
例 在△ABC中,∠A的度数是∠B的度数的3倍,∠C比∠B大15°,求∠A,∠B,∠C的度数.
解:设∠B为x°,则∠A为(3x)°,∠C为(x+15)°,从而有3x+x+(x+15)=180.
解得x=33.
所以3x=99,x+15=48.
答:∠A,∠B,∠C的度数分别为99°,33°,48°.
活动2 跟踪训练
1.在△ABC中,∠A∶∠B∶∠C=3∶4∶5.则∠C的度数为(C)
A.45° B.60° C.75° D.90°
2.如图,AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是(A)
A.63° B.83° C.73° D.53°
第2题图
第3题图
3.如图,AD是△ABC的外角∠CAE的平分线,∠B=30°,∠DAE=50°,则∠D的度数为__20°__,∠ACD的度数为__110°__.
活动3 课堂小结
初中数学湘教版八年级上册第2章 三角形2.2 命题与证明第1课时导学案: 这是一份初中数学湘教版八年级上册第2章 三角形2.2 命题与证明第1课时导学案,共4页。学案主要包含了自主学习,合作探究等内容,欢迎下载使用。
初中数学湘教版八年级上册2.1 三角形第2课时学案: 这是一份初中数学湘教版八年级上册2.1 三角形第2课时学案,共4页。学案主要包含了合作探究,自主学习等内容,欢迎下载使用。
初中数学湘教版八年级上册第2章 三角形2.1 三角形第3课时学案: 这是一份初中数学湘教版八年级上册第2章 三角形2.1 三角形第3课时学案,共4页。学案主要包含了合作探究,自主学习等内容,欢迎下载使用。