终身会员
搜索
    上传资料 赚现金

    第3章二次函数(选择题)-鲁教版(五四制)九年级数学上学期期末复习培优练习

    立即下载
    加入资料篮
    第3章二次函数(选择题)-鲁教版(五四制)九年级数学上学期期末复习培优练习第1页
    第3章二次函数(选择题)-鲁教版(五四制)九年级数学上学期期末复习培优练习第2页
    第3章二次函数(选择题)-鲁教版(五四制)九年级数学上学期期末复习培优练习第3页
    还剩36页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第3章二次函数(选择题)-鲁教版(五四制)九年级数学上学期期末复习培优练习

    展开

    这是一份第3章二次函数(选择题)-鲁教版(五四制)九年级数学上学期期末复习培优练习,共39页。


    第3章二次函数(选择题)-鲁教版(五四制)九年级数学上学期期末复习培优练习
    一.函数自变量的取值范围(共1小题)
    1.(2020•菏泽)函数y=的自变量x的取值范围是(  )
    A.x≠5 B.x>2且x≠5 C.x≥2 D.x≥2且x≠5
    二.函数值(共1小题)
    2.(2022•枣庄)已知y1和y2均是以x为自变量的函数,当x=n时,函数值分别是N1和N2,若存在实数n,使得N1+N2=1,则称函数y1和y2是“和谐函数”.则下列函数y1和y2不是“和谐函数”的是(  )
    A.y1=x2+2x和y2=﹣x+1 B.y1=和y2=x+1
    C.y1=﹣和y2=﹣x﹣1 D.y1=x2+2x和y2=﹣x﹣1
    三.函数的图象(共6小题)
    3.(2022•烟台)周末,父子二人在一段笔直的跑道上练习竞走,两人分别从跑道两端开始往返练习.在同一直角坐标系中,父子二人离同一端的距离s(米)与时间t(秒)的关系图象如图所示.若不计转向时间,按照这一速度练习20分钟,迎面相遇的次数为(  )


    A.12 B.16 C.20 D.24
    4.(2022•潍坊)地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同.观察图中数据,你发现(  )

    A.海拔越高,大气压越大
    B.图中曲线是反比例函数的图象
    C.海拔为4千米时,大气压约为70千帕
    D.图中曲线表达了大气压和海拔两个量之间的变化关系
    5.(2022•临沂)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y(单位:km)与时间x(单位:h)的对应关系如图所示,下列说法中不正确的是(  )

    A.甲车行驶到距A城240km处,被乙车追上
    B.A城与B城的距离是300km
    C.乙车的平均速度是80km/h
    D.甲车比乙车早到B城
    6.(2021•潍坊)记实数x1,x2,…,xn中的最小数为min{x1,x2,…,xn},例如min{﹣1,1,2}=﹣1,则函数y=min{2x﹣1,x,4﹣x}的图象大致为(  )
    A. B.
    C. D.
    7.(2021•临沂)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.

    如图为表示镭的放射规律的函数图象,据此可计算32mg镭缩减为1mg所用的时间大约是(  )
    A.4860年 B.6480年 C.8100年 D.9720年
    8.(2020•潍坊)若定义一种新运算:a⊗b=,例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是(  )
    A. B.
    C. D.
    四.二次函数的定义(共1小题)
    9.(2022•济南)某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m.如图所示,设矩形一边长为xm,另一边长为ym,当x在一定范围内变化时,y随x的变化而变化,则y与x满足的函数关系是(  )

    A.正比例函数关系 B.一次函数关系
    C.反比例函数关系 D.二次函数关系
    五.二次函数的图象(共3小题)
    10.(2021•东营)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是(  )
    A. B.
    C. D.
    11.(2020•菏泽)一次函数y=acx+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是(  )
    A. B.
    C. D.
    12.(2020•泰安)在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是(  )
    A.
    B.
    C.
    D.
    六.二次函数的性质(共1小题)
    13.(2021•滨州)对于二次函数y=x2﹣6x+21,有以下结论:①当x>5时,y随x的增大而增大;②当x=6时,y有最小值3;③图象与x轴有两个交点;④图象是由抛物线y=x2向左平移6个单位长度,再向上平移3个单位长度得到的.其中结论正确的个数为(  )
    A.1 B.2 C.3 D.4
    七.二次函数图象与系数的关系(共16小题)
    14.(2022•济南)抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C,过点C作直线l垂直于y轴,将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点M(m﹣1,y1),N(m+1,y2)为图形G上两点,若y1<y2,则m的取值范围是(  )
    A.m<﹣1或m>0 B.<m< C.0≤m< D.﹣1<m<1
    15.(2022•日照)已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为x=,且经过点(﹣1,0).下列结论:①3a+b=0;②若点(,y1),(3,y2)是抛物线上的两点,则y1<y2;③10b﹣3c=0;④若y≤c,则0≤x≤3.其中正确的有(  )

    A.1个 B.2个 C.3个 D.4个
    16.(2022•烟台)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其对称轴为直线x=﹣,且与x轴的一个交点坐标为(﹣2,0).下列结论:①abc>0;②a=b;③2a+c=0;④关于x的一元二次方程ax2+bx+c﹣1=0有两个相等的实数根.其中正确结论的序号是(  )

    A.①③ B.②④ C.③④ D.②③
    17.(2022•青岛)已知二次函数y=ax2+bx+c的图象开口向下,对称轴为直线x=﹣1,且经过点(﹣3,0),则下列结论正确的是(  )
    A.b>0 B.c<0 C.a+b+c>0 D.3a+c=0
    18.(2022•威海)如图,二次函数y=ax2+bx(a≠0)的图象过点(2,0),下列结论错误的是(  )

    A.b>0
    B.a+b>0
    C.x=2是关于x的方程ax2+bx=0(a≠0)的一个根
    D.点(x1,y1),(x2,y2)在二次函数的图象上,当x1>x2>2时,y2<y1<0
    19.(2022•滨州)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣2,0)、B(6,0),与y轴相交于点C,小红同学得出了以下结论:①b2﹣4ac>0;②4a+b=0;③当y>0时,﹣2<x<6;④a+b+c<0.其中正确的个数为(  )

    A.4 B.3 C.2 D.1
    20.(2021•日照)抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,其图象如图所示.下列结论:①abc<0;②(4a+c)2<(2b)2;③若(x1,y1)和(x2,y2)是抛物线上的两点,则当|x1+1|>|x2+1|时,y1<y2;④抛物线的顶点坐标为(﹣1,m),则关于x的方程ax2+bx+c=m﹣1无实数根.其中正确结论的个数是(  )

    A.4 B.3 C.2 D.1
    21.(2021•烟台)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.下列结论:
    ①ac>0;
    ②当x>0时,y随x的增大而增大;
    ③3a+c=0;
    ④a+b≥am2+bm.
    其中正确的个数有(  )

    A.1个 B.2个 C.3个 D.4个
    22.(2021•枣庄)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=,且经过点(2,0).下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是抛物线上的两点,则y1<y2;⑤b+c>m(am+b)+c(其中m≠).正确的结论有(  )

    A.2个 B.3个 C.4个 D.5个
    23.(2020•济南)已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x>2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若t≥﹣3,则m的取值范围是(  )
    A.m≥ B.≤m≤3 C.m≥3 D.1≤m≤3
    24.(2020•日照)如图,二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=﹣1,下列结论:
    ①abc<0;②3a<﹣c;③若m为任意实数,则有a﹣bm≤am2+b; ④若图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),则2x1﹣x2=5.其中正确的结论的个数是(  )

    A.4个 B.3个 C.2个 D.1个
    25.(2020•东营)如图,已知抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其对称轴与x轴交于点C,其中A、C两点的横坐标分别为﹣1和1,下列说法错误的是(  )

    A.abc<0
    B.4a+c=0
    C.16a+4b+c<0
    D.当x>2时,y随x的增大而减小
    26.(2020•威海)如图,抛物线y=ax2+bx+c(a≠0)交x轴于点A,B,交y轴于点C.若点A坐标为(﹣4,0),对称轴为直线x=﹣1,则下列结论错误的是(  )

    A.二次函数的最大值为a﹣b+c
    B.a+b+c>0
    C.b2﹣4ac>0
    D.2a+b=0
    27.(2020•枣庄)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:
    ①ac<0;
    ②b2﹣4ac>0;
    ③2a﹣b=0;
    ④a﹣b+c=0.
    其中,正确的结论有(  )

    A.1个 B.2个 C.3个 D.4个
    28.(2020•滨州)对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为(  )

    A.3 B.4 C.5 D.6
    29.(2020•德州)二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是(  )

    A.若(﹣2,y1),(5,y2)是图象上的两点,则y1>y2
    B.3a+c=0
    C.方程ax2+bx+c=﹣2有两个不相等的实数根
    D.当x≥0时,y随x的增大而减小
    八.二次函数图象上点的坐标特征(共1小题)
    30.(2021•济南)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n﹣4;m<0时,n′=﹣n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(﹣2,3)的限变点是P2′(﹣2,﹣3).若点P(m,n)在二次函数y=﹣x2+4x+2的图象上,则当﹣1≤m≤3时,其限变点P′的纵坐标n'的取值范围是(  )
    A.﹣2≤n′≤2 B.1≤n′≤3 C.1≤n′≤2 D.﹣2≤n′≤3
    九.二次函数图象与几何变换(共1小题)
    31.(2021•泰安)将抛物线y=﹣x2﹣2x+3向右平移1个单位,再向下平移2个单位得到的抛物线必定经过(  )
    A.(﹣2,2) B.(﹣1,1) C.(0,6) D.(1,﹣3)
    一十.抛物线与x轴的交点(共3小题)
    32.(2022•潍坊)抛物线y=x2+x+c与x轴只有一个公共点,则c的值为(  )
    A. B. C.﹣4 D.4
    33.(2022•泰安)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
    x
    ﹣2
    ﹣1
    0
    1
    y
    0
    4
    6
    6
    下列结论不正确的是(  )
    A.抛物线的开口向下
    B.抛物线的对称轴为直线x=
    C.抛物线与x轴的一个交点坐标为(2,0)
    D.函数y=ax2+bx+c的最大值为
    34.(2021•淄博)已知二次函数y=2x2﹣8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足===m,则m的值是(  )
    A.1 B. C.2 D.4

    第3章二次函数(选择题)-鲁教版(五四制)九年级数学上学期期末复习培优练习
    参考答案与试题解析
    一.函数自变量的取值范围(共1小题)
    1.(2020•菏泽)函数y=的自变量x的取值范围是(  )
    A.x≠5 B.x>2且x≠5 C.x≥2 D.x≥2且x≠5
    【解答】解:由题意得x﹣2≥0且x﹣5≠0,
    解得x≥2且x≠5.
    故选:D.
    二.函数值(共1小题)
    2.(2022•枣庄)已知y1和y2均是以x为自变量的函数,当x=n时,函数值分别是N1和N2,若存在实数n,使得N1+N2=1,则称函数y1和y2是“和谐函数”.则下列函数y1和y2不是“和谐函数”的是(  )
    A.y1=x2+2x和y2=﹣x+1 B.y1=和y2=x+1
    C.y1=﹣和y2=﹣x﹣1 D.y1=x2+2x和y2=﹣x﹣1
    【解答】解:A、令y1+y2=1,
    则x2+2x﹣x+1=1,
    整理得:x2+x=0,
    解得:x1=0,x2=﹣1,
    ∴函数y1和y2是“和谐函数”,故A不符合题意;
    B、令y1+y2=1,
    则+x+1=1,
    整理得:x2+1=0,
    此方程无解,
    ∴函数y1和y2不是“和谐函数”,故B符合题意;
    C、令y1+y2=1,
    则﹣﹣x﹣1=1,
    整理得:x2+2x+1=0,
    解得:x1=﹣1,x2=﹣1,
    ∴函数y1和y2是“和谐函数”,故C不符合题意;
    D、令y1+y2=1,
    则x2+2x﹣x﹣1=1,
    整理得:x2+x﹣2=0,
    解得:x1=1,x2=﹣2,
    ∴函数y1和y2是“和谐函数”,故D不符合题意;
    故选:B.
    三.函数的图象(共6小题)
    3.(2022•烟台)周末,父子二人在一段笔直的跑道上练习竞走,两人分别从跑道两端开始往返练习.在同一直角坐标系中,父子二人离同一端的距离s(米)与时间t(秒)的关系图象如图所示.若不计转向时间,按照这一速度练习20分钟,迎面相遇的次数为(  )


    A.12 B.16 C.20 D.24
    【解答】解:由图可知,父子速度分别为:200×2÷120=(米/秒)和200÷100=2(米/秒),
    ∴20分钟父子所走路程和为20×60×(+2)=6400(米),
    父子二人第一次迎面相遇时,两人所走路程之和为200米,
    父子二人第二次迎面相遇时,两人所走路程之和为200×2+200=600(米),
    父子二人第三次迎面相遇时,两人所走路程之和为400×2+200=1000(米),
    父子二人第四次迎面相遇时,两人所走路程之和为600×2+200=1400(米),

    父子二人第n次迎面相遇时,两人所走路程之和为200(n﹣1)×2+200=(400n﹣200)米,
    令400n﹣200=6400,
    解得n=16.5,
    ∴父子二人迎面相遇的次数为16,
    故选:B.
    4.(2022•潍坊)地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同.观察图中数据,你发现(  )

    A.海拔越高,大气压越大
    B.图中曲线是反比例函数的图象
    C.海拔为4千米时,大气压约为70千帕
    D.图中曲线表达了大气压和海拔两个量之间的变化关系
    【解答】解:海拔越高大气压越低,A选项不符合题意;
    代值图中点(2,80)和(4,60),由横、纵坐标之积不同,说明图中曲线不是反比例函数的图象,B选项不符合题意;
    海拔为4千米时,图中读数可知大气压应该是60千帕左右,C选项不符合题意;
    图中曲线表达的是大气压与海拔两个量之间的变化关系,D选项符合题意.
    故选:D.
    5.(2022•临沂)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y(单位:km)与时间x(单位:h)的对应关系如图所示,下列说法中不正确的是(  )

    A.甲车行驶到距A城240km处,被乙车追上
    B.A城与B城的距离是300km
    C.乙车的平均速度是80km/h
    D.甲车比乙车早到B城
    【解答】解:由题意可知,A城与B城的距离是300km,故选项B不合题意;
    甲车的平均速度是:300÷5=60(km/h),
    乙车的平均速度是:240÷(4﹣1)=80(km/h),故选项C不合题意;
    设乙车出发x小时后追上甲车,则60(x+1)=80x,
    解得x=3,
    60×4=240(km),即甲车行驶到距A城240km处,被乙车追上,故选项A不合题意;
    由题意可知,乙车比甲车早到B城,故选项D符合题意.
    故选:D.
    6.(2021•潍坊)记实数x1,x2,…,xn中的最小数为min{x1,x2,…,xn},例如min{﹣1,1,2}=﹣1,则函数y=min{2x﹣1,x,4﹣x}的图象大致为(  )
    A. B.
    C. D.
    【解答】解:如图,由2x﹣1=x得:x=1,
    ∴点A的横坐标为1,
    由4﹣x=x得:x=2,
    ∴点C的横坐标为2,
    当x≤1时,y=min{2x﹣1,x,4﹣x}=2x﹣1,
    当1<x≤2时,y=min{2x﹣1,x,4﹣x}=x,
    当x>2时,y=min{2x﹣1,x,4﹣x}=4﹣x,

    则函数y=min{2x﹣1,x,4﹣x}的图象大致为B.
    故选:B.
    7.(2021•临沂)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.

    如图为表示镭的放射规律的函数图象,据此可计算32mg镭缩减为1mg所用的时间大约是(  )
    A.4860年 B.6480年 C.8100年 D.9720年
    【解答】解:由图可知:
    1620年时,镭质量缩减为原来的,
    经过1620年,即当3240年时,镭质量缩减为原来的,
    经过1620×2=3240年,即当4860年时,镭质量缩减为原来的,
    经过1620×3=4860年,即当6480年时,镭质量缩减为原来的,
    ∴经过1620×4=6480年,即当8100年时,镭质量缩减为原来的,
    此时32×=1mg,
    故选:C.
    8.(2020•潍坊)若定义一种新运算:a⊗b=,例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是(  )
    A. B.
    C. D.
    【解答】解:∵当x+2≥2(x﹣1)时,x≤4,
    ∴当x≤4时,(x+2)⊗(x﹣1)=(x+2)﹣(x﹣1)=x+2﹣x+1=3,
    即:y=3,
    当x>4时,(x+2)⊗(x﹣1)=(x+2)+(x﹣1)﹣6=x+2+x﹣1﹣6=2x﹣5,
    即:y=2x﹣5,
    ∴k=2>0,
    ∴当x>4时,y=2x﹣5,函数图象从左向右逐渐上升,y随x的增大而增大,
    综上所述,A选项符合题意.
    故选:A.
    四.二次函数的定义(共1小题)
    9.(2022•济南)某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m.如图所示,设矩形一边长为xm,另一边长为ym,当x在一定范围内变化时,y随x的变化而变化,则y与x满足的函数关系是(  )

    A.正比例函数关系 B.一次函数关系
    C.反比例函数关系 D.二次函数关系
    【解答】解:由题意得,y=40﹣2x,
    所以y与x是一次函数关系,
    故选:B.
    五.二次函数的图象(共3小题)
    10.(2021•东营)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是(  )
    A. B.
    C. D.
    【解答】解:在A中,由一次函数图象可知,a>0,b>0,由二次函数图象可知,a<0,b<0,故选项A错误;
    在B中,由一次函数图象可知,a>0,b>0,由二次函数图象可知,a>0,b<0,故选项B错误;
    在C中,由一次函数图象可知,a<0,b<0,由二次函数图象可知,a<0,b<0,故选项C正确;
    在D中,由一次函数图象可知,a<0,b>0,由二次函数图象可知,a<0,b<0,故选项D错误;
    故选:C.
    11.(2020•菏泽)一次函数y=acx+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是(  )
    A. B.
    C. D.
    【解答】解:A、由抛物线可知,a>0,b<0,c>0,则ac>0,由直线可知,ac>0,b>0,故本选项不合题意;
    B、由抛物线可知,a>0,b>0,c>0,则ac>0,由直线可知,ac>0,b>0,故本选项符合题意;
    C、由抛物线可知,a<0,b>0,c>0,则ac<0,由直线可知,ac<0,b<0,故本选项不合题意;
    D、由抛物线可知,a<0,b<0,c>0,则ac<0,由直线可知,ac>0,b>0,故本选项不合题意.
    故选:B.
    12.(2020•泰安)在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是(  )
    A.
    B.
    C.
    D.
    【解答】解:A、二次函数图象开口向上,对称轴在y轴右侧,
    ∴a>0,b<0,
    ∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,
    故A错误;
    B、∵二次函数图象开口向下,对称轴在y轴左侧,
    ∴a<0,b<0,
    ∴一次函数图象应该过第二、三、四象限,且与二次函数交于y轴负半轴的同一点,
    故B错误;
    C、二次函数图象开口向上,对称轴在y轴右侧,
    ∴a>0,b<0,
    ∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,
    故C正确;
    ∵D、二次函数图象开口向上,对称轴在y轴右侧,
    ∴a>0,b<0,
    ∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,
    故D错误;
    故选:C.
    六.二次函数的性质(共1小题)
    13.(2021•滨州)对于二次函数y=x2﹣6x+21,有以下结论:①当x>5时,y随x的增大而增大;②当x=6时,y有最小值3;③图象与x轴有两个交点;④图象是由抛物线y=x2向左平移6个单位长度,再向上平移3个单位长度得到的.其中结论正确的个数为(  )
    A.1 B.2 C.3 D.4
    【解答】解:∵二次函数y=x2﹣6x+21=(x﹣6)2+3,
    ∴该函数的对称轴为直线x=6,函数图象开口向上,
    当5<x<6时,y随x的增大而减小,当x>6时,y随x的增大而增大,故①不符合题意;
    当x=6时,y有最小值3,故②符合题意;
    当y=0时,无实数根,即图象与x轴无交点,故③不符合题意;
    图象是由抛物线y=x2向右平移6个单位长度,再向上平移3个单位长度得到的,故④不符合题意;
    故正确的是②,正确的个数是1,
    故选:A.
    七.二次函数图象与系数的关系(共16小题)
    14.(2022•济南)抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C,过点C作直线l垂直于y轴,将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点M(m﹣1,y1),N(m+1,y2)为图形G上两点,若y1<y2,则m的取值范围是(  )
    A.m<﹣1或m>0 B.<m< C.0≤m< D.﹣1<m<1
    【解答】解:在y=﹣x2+2mx﹣m2+2中,令x=m﹣1,得y=﹣(m﹣1)2+2m(m﹣1)﹣m2+2=1,
    令x=m+1,得y=﹣(m+1)2+2m(m+1)﹣m2+2=1,
    ∴(m﹣1,1)和(m+1,1)是关于抛物线y=﹣x2+2mx﹣m2+2对称轴对称的两点,
    ①若m﹣1≥0,即(m﹣1,1)和(m+1,1)在y轴右侧(包括(m﹣1,1)在y轴上),
    则点(m﹣1,1)经过翻折得M(m﹣1,y1),点(m+1,1)经过翻折得N(m+1,y2),
    如图:

    由对称性可知,y1=y2,
    ∴此时不满足y1<y2;
    ②当m+1≤0,即(m﹣1,1)和(m+1,1)在y轴左侧(包括(m+1,1)在y轴上),
    则点(m﹣1,1)即为M(m﹣1,y1),点(m+1,1)即为N(m+1,y2),
    ∴y1=y2,
    ∴此时不满足y1<y2;
    ③当m﹣1<0<m+1,即(m﹣1,1)在y轴左侧,(m+1,1)在y轴右侧时,如图:

    此时M(m﹣1,1),(m+1,1)翻折后得N,满足y1<y2;
    由m﹣1<0<m+1得:﹣1<m<1,
    故选:D.
    15.(2022•日照)已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为x=,且经过点(﹣1,0).下列结论:①3a+b=0;②若点(,y1),(3,y2)是抛物线上的两点,则y1<y2;③10b﹣3c=0;④若y≤c,则0≤x≤3.其中正确的有(  )

    A.1个 B.2个 C.3个 D.4个
    【解答】解:∵对称轴x=﹣=,
    ∴b=﹣3a,
    ∴3a+b=0,①正确;
    ∵抛物线开口向上,点(,y1)到对称轴的距离小于点(3,y2)的距离,
    ∴y1<y2,故②正确;
    ∵经过点(﹣1,0),
    ∴a﹣b+c=0,
    ∵对称轴x=﹣=,
    ∴a=﹣b,
    ∴﹣b﹣b+c=0,
    ∴3c=4b,
    ∴4b﹣3c=0,故③错误;
    ∵对称轴x=,
    ∴点(0,c)的对称点为(3,c),
    ∵开口向上,
    ∴y≤c时,0≤x≤3.故④正确;
    故选:C.
    16.(2022•烟台)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其对称轴为直线x=﹣,且与x轴的一个交点坐标为(﹣2,0).下列结论:①abc>0;②a=b;③2a+c=0;④关于x的一元二次方程ax2+bx+c﹣1=0有两个相等的实数根.其中正确结论的序号是(  )

    A.①③ B.②④ C.③④ D.②③
    【解答】解:①由图可知:a>0,c<0,<0,
    ∴b>0,
    ∴abc<0,故①不符合题意.
    ②由题意可知:=﹣,
    ∴b=a,故②符合题意.
    ③将(﹣2,0)代入y=ax2+bx+c,
    ∴4a﹣2b+c=0,
    ∵a=b,
    ∴2a+c=0,故③符合题意.
    ④由图象可知:二次函数y=ax2+bx+c的最小值小于0,
    令y=1代入y=ax2+bx+c,
    ∴ax2+bx+c=1有两个不相同的解,故④不符合题意.
    故选:D.
    17.(2022•青岛)已知二次函数y=ax2+bx+c的图象开口向下,对称轴为直线x=﹣1,且经过点(﹣3,0),则下列结论正确的是(  )
    A.b>0 B.c<0 C.a+b+c>0 D.3a+c=0
    【解答】解:选项A:∵抛物线开口向下,
    ∴a<0.
    ∵对称轴为直线x=﹣1,
    ∴﹣=﹣1.
    ∴b=2a.
    ∴b<0.故选项A错误;
    选项B:设抛物线与x轴的另一个交点为(x1,0),
    则抛物线的对称轴可表示为x=(x1﹣3),
    ∴﹣1=(x1﹣3),解得x1=1,
    ∴抛物线与x轴的两个交点为(1,0)和(﹣3,0).
    又∵抛物线开口向下,
    ∴抛物线与y轴交于正半轴.
    ∴c>0.故选项B错误.
    选项C:∵抛物线过点(1,0).
    ∴a+b+c=0.故选项C错误;
    选项D:∵b=2a,且a+b+c=0,
    ∴3a+c=0.故选项D正确.
    故选:D.
    18.(2022•威海)如图,二次函数y=ax2+bx(a≠0)的图象过点(2,0),下列结论错误的是(  )

    A.b>0
    B.a+b>0
    C.x=2是关于x的方程ax2+bx=0(a≠0)的一个根
    D.点(x1,y1),(x2,y2)在二次函数的图象上,当x1>x2>2时,y2<y1<0
    【解答】解:根据图象知,当x=1时,y=a+b>0,
    故B选项结论正确,不符合题意,
    ∵a<0,
    ∴b>0,
    故A选项结论正确,不符合题意,
    根据图象可知x=2是关于x的方程ax2+bx=0(a≠0)的一个根,
    故C选项结论正确,不符合题意,
    若点(x1,y1),(x2,y2)在二次函数的图象上,
    当x1>x2>2时,y1<y2<0,
    故D选项结论不正确,符合题意,
    故选:D.
    19.(2022•滨州)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣2,0)、B(6,0),与y轴相交于点C,小红同学得出了以下结论:①b2﹣4ac>0;②4a+b=0;③当y>0时,﹣2<x<6;④a+b+c<0.其中正确的个数为(  )

    A.4 B.3 C.2 D.1
    【解答】解:由图象可得,
    该抛物线与x轴有两个交点,则b2﹣4ac>0,故①正确;
    ∵抛物线y=ax2+bx+c与x轴相交于点A(﹣2,0)、B(6,0),
    ∴该抛物线的对称轴是直线x==2,
    ∴﹣=2,
    ∴b+4a=0,故②正确;
    由图象可得,当y>0时,x<﹣2或x>6,故③错误;
    当x=1时,y=a+b+c<0,故④正确;
    故选:B.
    20.(2021•日照)抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,其图象如图所示.下列结论:①abc<0;②(4a+c)2<(2b)2;③若(x1,y1)和(x2,y2)是抛物线上的两点,则当|x1+1|>|x2+1|时,y1<y2;④抛物线的顶点坐标为(﹣1,m),则关于x的方程ax2+bx+c=m﹣1无实数根.其中正确结论的个数是(  )

    A.4 B.3 C.2 D.1
    【解答】解:①∵抛物线图象开口向上,
    ∴a>0,
    ∵对称轴在直线y轴左侧,
    ∴a,b同号,b>0,
    ∵抛物线与y轴交点在x轴下方,
    ∴c<0,
    ∴abc<0,故①正确.
    ②(4a+c)2﹣(2b)2=(4a+c+2b)(4a+c﹣2b),
    当x=2时ax2+bx+c=4a+c+2b,由图象可得4a+c+2b>0,
    由图象知,当x=﹣2时,ax2+bx+c=4a+c﹣2b,由图象可得4a+c﹣2b<0,
    ∴(4a+c)2﹣(2b)2<0,即(4a+c)2<(2b)2,
    故②正确.
    ③|x1+1|=|x1﹣(﹣1)|,|x2+1|=|x2﹣(﹣1)|,
    ∵|x1+1|>|x2+1|,
    ∴点(x1,y1)到对称轴的距离大于点(x2,y2)到对称轴的距离,
    ∴y1>y2,
    故③错误.
    ④∵抛物线的顶点坐标为(﹣1,m),
    ∴y≥m,
    ∴ax2+bx+c≥m,
    ∴ax2+bx+c=m﹣1无实数根.
    故④正确,
    综上所述,①②④正确,
    故选:B.
    21.(2021•烟台)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.下列结论:
    ①ac>0;
    ②当x>0时,y随x的增大而增大;
    ③3a+c=0;
    ④a+b≥am2+bm.
    其中正确的个数有(  )

    A.1个 B.2个 C.3个 D.4个
    【解答】解:把点A(﹣1,0),B(3,0)代入二次函数y=ax2+bx+c,
    可得二次函数的解析式为:y=ax2﹣2ax﹣3a,
    ∵该函数图象开口方向向下,
    ∴a<0,
    ∴b=﹣2a>0,c=﹣3a>0,
    ∴ac<0,3a+c=0,①错误,③正确;
    ∵对称轴为直线:x=﹣=1,
    ∴x<1时,y随x的增大而增大,x>1时,y随x的增大而减小;②错误;
    ∴当x=1时,函数取得最大值,即对于任意的m,有a+b+c≥am2+bm+c,
    ∴a+b≥am2+bm,故④正确.
    综上,正确的个数有2个,
    故选:B.
    22.(2021•枣庄)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=,且经过点(2,0).下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是抛物线上的两点,则y1<y2;⑤b+c>m(am+b)+c(其中m≠).正确的结论有(  )

    A.2个 B.3个 C.4个 D.5个
    【解答】解:∵抛物线开口向下,且交y轴于正半轴,
    ∴a<0,c>0,
    ∵对称轴x=﹣=,即b=﹣a,
    ∴b>0,
    ∴abc<0,
    故①正确;
    ∵二次函数y=ax2+bx+c(a≠0)的图象过点(2,0),
    ∴0=4a+2b+c,
    故③不正确;
    又可知b=﹣a,
    ∴0=﹣4b+2b+c,即﹣2b+c=0,
    故②正确;
    ∵抛物线开口向下,对称轴是直线x=,且=1,=2,
    ∴y1>y2,
    故选④不正确;
    ∵抛物线开口向下,对称轴是直线x=,
    ∴当x=时,抛物线y取得最大值ymax==,
    当x=m时,ym=am2+bm+c=m(am+b)+c,且m≠,
    ∴ymax>ym,
    故⑤正确,
    综上,结论①②⑤正确,
    故选:B.
    23.(2020•济南)已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x>2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若t≥﹣3,则m的取值范围是(  )
    A.m≥ B.≤m≤3 C.m≥3 D.1≤m≤3
    【解答】解:当对称轴在y轴的右侧时,,
    解得≤m<3,
    当对称轴是y轴时,m=3,符合题意,
    当对称轴在y轴的左侧时,2m﹣6>0,解得m>3,
    综上所述,满足条件的m的值为m≥.
    故选:A.
    24.(2020•日照)如图,二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=﹣1,下列结论:
    ①abc<0;②3a<﹣c;③若m为任意实数,则有a﹣bm≤am2+b; ④若图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),则2x1﹣x2=5.其中正确的结论的个数是(  )

    A.4个 B.3个 C.2个 D.1个
    【解答】解:由图象可知:a<0,c>0,,
    ∴b=2a<0,
    ∴abc>0,故①abc<0错误;
    当x=1时,y=a+b+c=a+2a+c=3a+c<0,
    ∴3a<﹣c,故②3a<﹣c正确;
    ∵x=﹣1时,y有最大值,
    ∴a﹣b+c≥am2+bm+c(m为任意实数),
    即a﹣b≥am2+bm,即a﹣bm≥am2+b,故③错误;
    ∵二次函数y=ax2+bx+c(a≠0)图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),
    ∴二次函数y=ax2+bx+c与直线y=﹣2的一个交点为(﹣3,﹣2),
    ∵抛物线的对称轴为直线x=﹣1,
    ∴二次函数y=ax2+bx+c与直线y=﹣2的另一个交点为(1,﹣2),
    即x1=1,x2=﹣3,
    ∴2x1﹣x2=2﹣(﹣3)=5,故④正确.
    所以正确的是②④;
    故选:C.
    25.(2020•东营)如图,已知抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其对称轴与x轴交于点C,其中A、C两点的横坐标分别为﹣1和1,下列说法错误的是(  )

    A.abc<0
    B.4a+c=0
    C.16a+4b+c<0
    D.当x>2时,y随x的增大而减小
    【解答】解:抛物线开口向下,因此a<0,对称轴为x=1,即﹣=1,也就是2a+b=0,b>0,抛物线与y轴交于正半轴,于是c>0,
    ∴abc<0,因此选项A不符合题意;
    由A(﹣1,0)、C(1,0)对称轴为x=1,可得抛物线与x轴的另一个交点B(3,0),
    ∴a﹣b+c=0,
    ∴a+2a+c=0,即3a+c=0,
    而a<0,所以4a+c<0,因此选项B符合题意;
    当x=4时,y=16a+4b+c<0,因此选项C不符合题意;
    当x>1时,y随x的增大而减小,因此选项D不符合题意;
    故选:B.
    26.(2020•威海)如图,抛物线y=ax2+bx+c(a≠0)交x轴于点A,B,交y轴于点C.若点A坐标为(﹣4,0),对称轴为直线x=﹣1,则下列结论错误的是(  )

    A.二次函数的最大值为a﹣b+c
    B.a+b+c>0
    C.b2﹣4ac>0
    D.2a+b=0
    【解答】解:当x=﹣1时,y=a﹣b+c的值最大,选项A不符合题意;
    抛物线与x轴的另一个交点为(2,0),
    当x=1时,y=a+b+c>0,因此选项B不符合题意;
    抛物线与x轴有两个不同交点,因此b2﹣4ac>0,故选项C不符合题意;
    抛物线y=ax2+bx+c过点A(﹣4,0),对称轴为直线x=﹣1,
    因此有:x=﹣1=﹣,即2a﹣b=0,因此选项D符合题意;
    故选:D.
    27.(2020•枣庄)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:
    ①ac<0;
    ②b2﹣4ac>0;
    ③2a﹣b=0;
    ④a﹣b+c=0.
    其中,正确的结论有(  )

    A.1个 B.2个 C.3个 D.4个
    【解答】解:抛物线开口向下,a<0,对称轴为x=﹣=1,因此b>0,与y轴交于正半轴,因此c>0,
    于是有:ac<0,因此①正确;
    由x=﹣=1,得2a+b=0,因此③不正确,
    抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,
    由对称轴x=1,抛物线与x 轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,
    综上所述,正确的结论有①②④,
    故选:C.
    28.(2020•滨州)对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为(  )

    A.3 B.4 C.5 D.6
    【解答】解:①由图象可知:a>0,c<0,
    ∵﹣=1,
    ∴b=﹣2a<0,
    ∴abc>0,故①错误;
    ②∵抛物线与x轴有两个交点,
    ∴b2﹣4ac>0,
    ∴b2>4ac,故②正确;
    ③当x=2时,y=4a+2b+c<0,故③错误;
    ④当x=﹣1时,y=a﹣b+c=a﹣(﹣2a)+c>0,
    ∴3a+c>0,故④正确;
    ⑤当x=1时,y取到值最小,此时,y=a+b+c,
    而当x=m时,y=am2+bm+c,
    所以a+b+c≤am2+bm+c,
    故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,
    ⑥当x<﹣1时,y随x的增大而减小,故⑥错误,
    故选:A.
    29.(2020•德州)二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是(  )

    A.若(﹣2,y1),(5,y2)是图象上的两点,则y1>y2
    B.3a+c=0
    C.方程ax2+bx+c=﹣2有两个不相等的实数根
    D.当x≥0时,y随x的增大而减小
    【解答】解:∵抛物线的对称轴为直线x=1,a<0,
    ∴点(﹣1,0)关于直线x=1的对称点为(3,0),
    则抛物线与x轴的另一个交点坐标为(3,0),点(﹣2,y1)与(4,y1)是对称点,
    ∵当x>1时,函数y随x增大而减小,
    故A选项不符合题意;
    把点(﹣1,0),(3,0)代入y=ax2+bx+c得:a﹣b+c=0①,9a+3b+c=0②,
    ①×3+②得:12a+4c=0,
    ∴3a+c=0,
    故B选项不符合题意;
    当y=﹣2时,y=ax2+bx+c=﹣2,
    由图象得:纵坐标为﹣2的点有2个,
    ∴方程ax2+bx+c=﹣2有两个不相等的实数根,
    故C选项不符合题意;
    ∵二次函数图象的对称轴为x=1,a<0,
    ∴当x≤1时,y随x的增大而增大;
    当x≥1时,y随x的增大而减小;
    故D选项符合题意;
    故选:D.
    八.二次函数图象上点的坐标特征(共1小题)
    30.(2021•济南)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n﹣4;m<0时,n′=﹣n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(﹣2,3)的限变点是P2′(﹣2,﹣3).若点P(m,n)在二次函数y=﹣x2+4x+2的图象上,则当﹣1≤m≤3时,其限变点P′的纵坐标n'的取值范围是(  )
    A.﹣2≤n′≤2 B.1≤n′≤3 C.1≤n′≤2 D.﹣2≤n′≤3
    【解答】解:由题意可知,
    当m≥0时,n′=﹣m2+4m+2﹣4=﹣(m﹣2)2+2,
    ∴当0≤m≤3时,﹣2≤n′≤2,
    当m<0时,n′=m2﹣4m﹣2=(m﹣2)2﹣6,
    ∴当﹣1≤m<0时,﹣2<n′≤3,
    综上,当﹣1≤m≤3时,其限变点P′的纵坐标n'的取值范围是﹣2≤n′≤3,
    故选:D.
    九.二次函数图象与几何变换(共1小题)
    31.(2021•泰安)将抛物线y=﹣x2﹣2x+3向右平移1个单位,再向下平移2个单位得到的抛物线必定经过(  )
    A.(﹣2,2) B.(﹣1,1) C.(0,6) D.(1,﹣3)
    【解答】解:y=﹣x2﹣2x+3
    =﹣(x2+2x)+3
    =﹣[(x+1)2﹣1]+3
    =﹣(x+1)2+4,
    ∵将抛物线y=﹣x2﹣2x+3向右平移1个单位,再向下平移2个单位,
    ∴得到的抛物线解析式为:y=﹣x2+2,
    当x=﹣2时,y=﹣(﹣2)2+2=﹣4+2=﹣2,故(﹣2,2)不在此抛物线上,故A选项不合题意;
    当x=﹣1时,y=﹣(﹣1)2+2=﹣1+2=1,故(﹣1,1)在此抛物线上,故B选项符合题意;
    当x=0时,y=﹣02+2=0+2=2,故(0,6)不在此抛物线上,故C选项不合题意;
    当x=1时,y=﹣12+2=﹣1+2=1,故(1,﹣3)不在此抛物线上,故D选项不合题意;
    故选:B.
    一十.抛物线与x轴的交点(共3小题)
    32.(2022•潍坊)抛物线y=x2+x+c与x轴只有一个公共点,则c的值为(  )
    A. B. C.﹣4 D.4
    【解答】解:∵抛物线y=x2+x+c与x轴只有一个公共点,
    ∴方程x2+x+c=0有两个相等的实数根,
    ∴Δ=b2﹣4ac=12﹣4×1•c=0,
    ∴c=.
    故选:B.
    33.(2022•泰安)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
    x
    ﹣2
    ﹣1
    0
    1
    y
    0
    4
    6
    6
    下列结论不正确的是(  )
    A.抛物线的开口向下
    B.抛物线的对称轴为直线x=
    C.抛物线与x轴的一个交点坐标为(2,0)
    D.函数y=ax2+bx+c的最大值为
    【解答】解:由表格可得,

    解得,
    ∴y=﹣x2+x+6=﹣(x﹣)2+=(﹣x+3)(x+2),
    ∴该抛物线的开口向下,故选项A正确,不符合题意;
    该抛物线的对称轴是直线x=,故选项B正确,不符合题意,
    ∵当x=﹣2时,y=0,
    ∴当x=×2﹣(﹣2)=3时,y=0,故选项C错误,符合题意;
    函数y=ax2+bx+c的最大值为,故选项D正确,不符合题意;
    故选:C.
    34.(2021•淄博)已知二次函数y=2x2﹣8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足===m,则m的值是(  )
    A.1 B. C.2 D.4
    【解答】解:∵二次函数y=2x2﹣8x+6的图象上有且只有P1,P2,P3三点满足===m,
    ∴三点中必有一点在二次函数y=2x2﹣8x+6的顶点上,
    ∵y=2x2﹣8x+6=2(x﹣2)2﹣2=2(x﹣1)(x﹣3),
    ∴二次函数y=2x2﹣8x+6的图象的顶点坐标为(2,﹣2),
    令y=0,则2(x﹣1)(x﹣3)=0,
    解得x=1或x=3,
    ∴与x轴的交点为(1,0),(3,0),
    ∴AB=3﹣1=2,
    ∴m==2.
    故选:C.

    相关试卷

    第3章二次函数(解答题压轴题)-鲁教版(五四制)九年级数学上学期期末复习培优练习:

    这是一份第3章二次函数(解答题压轴题)-鲁教版(五四制)九年级数学上学期期末复习培优练习,共47页。试卷主要包含了x﹣1与x轴有公共点,探索发现,两点,与y轴交于点C,连接BC,,连接AC,BC等内容,欢迎下载使用。

    第5章圆(填空题)-鲁教版(五四制)九年级数学下册期末复习培优练习:

    这是一份第5章圆(填空题)-鲁教版(五四制)九年级数学下册期末复习培优练习,共20页。

    第5章圆(选择题)-鲁教版(五四制)九年级数学下册期末复习培优练习:

    这是一份第5章圆(选择题)-鲁教版(五四制)九年级数学下册期末复习培优练习,共29页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map