海南海口市琼山区国兴中学2021-2022学年毕业升学考试模拟卷数学卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
2.下列图形中,可以看作是中心对称图形的是( )
A. B. C. D.
3.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=5 ,则∠B的度数是( )
A.30° B.45° C.50° D.60°
4.估计﹣2的值应该在( )
A.﹣1﹣0之间 B.0﹣1之间 C.1﹣2之间 D.2﹣3之间
5.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( )
A.45° B.60° C.70° D.90°
6.如图,是半圆的直径,点、是半圆的三等分点,弦.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为( )
A. B. C. D.
7.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:
年龄(岁)
12
13
14
15
人数(个)
2
4
6
8
根据表中信息可以判断该排球队员年龄的平均数、众数、中位数分别为( )
A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、15
8.某班 30名学生的身高情况如下表:
身高
人数
1
3
4
7
8
7
则这 30 名学生身高的众数和中位数分别是
A., B.,
C., D.,
9.不等式2x﹣1<1的解集在数轴上表示正确的是( )
A. B.
C. D.
10.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )
A.赚了10元 B.赔了10元 C.赚了50元 D.不赔不赚
11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0,②当﹣1≤x≤3时,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函数图象上,当0<x1<x2时,y1<y2,其中正确的是( )
A.①②④ B.①③ C.①②③ D.①③④
12.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车辆,根据题意,可列出的方程是 ( ).
A. B.
C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_____.
14.如图,在平面直角坐标系xOy中,A(-2,0),B(0,2),⊙O的半径为1,点C为⊙O上一动点,过点B作BP⊥直线AC,垂足为点P,则P点纵坐标的最大值为 cm.
15.如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为_____.
16.如图,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB得到线段A′B′的过程______
17.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_____.
18.如图,AB是半圆O的直径,E是半圆上一点,且OE⊥AB,点C为的中点,则∠A=__________°.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).
20.(6分)如图,AB是⊙O的直径,,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.
求∠BAC的度数;当点D在AB上方,且CD⊥BP时,求证:PC=AC;在点P的运动过程中
①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;
②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.
21.(6分)(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;
(2)先化简,再求值:()+,其中a=﹣2+.
22.(8分)如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.试猜想线段BG和AE的数量关系是_____;将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),
①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;
②若BC=DE=4,当AE取最大值时,求AF的值.
23.(8分)计算:|﹣2|++(2017﹣π)0﹣4cos45°
24.(10分)已知关于的方程有两个实数根.求的取值范围;若,求的值;
25.(10分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.
根据图示填写下表;
平均数(分)
中位数(分)
众数(分)
初中部
85
高中部
85
100
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.
26.(12分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精确到0.1m)
27.(12分)如图,点D为△ABC边上一点,请用尺规过点D,作△ADE,使点E在AC上,且△ADE与△ABC相似.(保留作图痕迹,不写作法,只作出符合条件的一个即可)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且= .∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).
方法二:∵点A(―3,6)且相似比为,∴点A的对应点A′的坐标是(―3×,6×),∴A′(-1,2).
∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).
故答案选D.
考点:位似变换.
2、A
【解析】
分析:根据中心对称的定义,结合所给图形即可作出判断.
详解:A、是中心对称图形,故本选项正确;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误;
故选:A.
点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.
3、D
【解析】
根据圆周角定理的推论,得∠B=∠D.根据直径所对的圆周角是直角,得∠ACD=90°.
在直角三角形ACD中求出∠D.
则sinD=
∠D=60°
∠B=∠D=60°.
故选D.
“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边.
4、A
【解析】
直接利用已知无理数得出的取值范围,进而得出答案.
【详解】
解:∵1<<2,
∴1-2<﹣2<2-2,
∴-1<﹣2<0
即-2在-1和0之间.
故选A.
【点睛】
此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.
5、D
【解析】
已知△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,根据旋转的性质可得∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质和三角形的内角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故选D.
6、D
【解析】
连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.
【详解】
解:如图,连接OC、OD、BD,
∵点C、D是半圆O的三等分点,
∴,
∴∠AOC=∠COD=∠DOB=60°,
∵OC=OD,
∴△COD是等边三角形,
∴OC=OD=CD,
∵,
∴,
∵OB=OD,
∴△BOD是等边三角形,则∠ODB=60°,
∴∠ODB=∠COD=60°,
∴OC∥BD,
∴,
∴S阴影=S扇形OBD,
S半圆O,
飞镖落在阴影区域的概率,
故选:D.
【点睛】
本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.
7、B
【解析】
根据加权平均数、众数、中位数的计算方法求解即可.
【详解】
,
15出现了8次,出现的次数最多,故众数是15,
从小到大排列后,排在10、11两个位置的数是14,14,故中位数是14.
故选B.
【点睛】
本题考查了平均数、众数与中位数的意义.数据x1、x2、……、xn的加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权数).一组数据中出现次数最多的数据叫做众数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.
8、A
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据.
【详解】
解:这组数据中,出现的次数最多,故众数为,
共有30人,
第15和16人身高的平均数为中位数,
即中位数为:,
故选:A.
【点睛】
本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大或从大到小的顺序排列,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
9、D
【解析】
先求出不等式的解集,再在数轴上表示出来即可.
【详解】
移项得,2x<1+1,
合并同类项得,2x<2,
x的系数化为1得,x<1.
在数轴上表示为:
.
故选D.
【点睛】
本题考查了解一元一次不等式,熟练掌握运算法则是解题的关键.
10、A
【解析】
试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.
考点:一元一次方程的应用
11、B
【解析】
∵函数图象的对称轴为:x=-==1,∴b=﹣2a,即2a+b=0,①正确;
由图象可知,当﹣1<x<3时,y<0,②错误;
由图象可知,当x=1时,y=0,∴a﹣b+c=0,
∵b=﹣2a,∴3a+c=0,③正确;
∵抛物线的对称轴为x=1,开口方向向上,
∴若(x1,y1)、(x2,y2)在函数图象上,当1<x1<x2时,y1<y2;当x1<x2<1时,y1>y2;
故④错误;
故选B.
点睛:本题主要考查二次函数的相关知识,解题的关键是:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理.
12、B
【解析】
根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.
【详解】
根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.
故选B.
【点睛】
此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、甲.
【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,方差越大,数据不稳定,则为新手.
【详解】
∵通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,
∴甲的方差大于乙的方差.
故答案为:甲.
【点睛】
本题考查的知识点是方差,条形统计图,解题的关键是熟练的掌握方差,条形统计图.
14、
【解析】
当AC与⊙O相切于点C时,P点纵坐标的最大值,如图,直线AC交y轴于点D,连结OC,作CH⊥x轴于H,PM⊥x轴于M,DN⊥PM于N,
∵AC为切线,
∴OC⊥AC,
在△AOC中,∵OA=2,OC=1,
∴∠OAC=30°,∠AOC=60°,
在Rt△AOD中,∵∠DAO=30°,
∴OD=OA=,
在Rt△BDP中,∵∠BDP=∠ADO=60°,
∴DP=BD=(2-)=1-,
在Rt△DPN中,∵∠PDN=30°,
∴PN=DP=-,
而MN=OD=,
∴PM=PN+MN=1-+=,
即P点纵坐标的最大值为.
【点睛】
本题是圆的综合题,先求出OD的长度,最后根据两点之间线段最短求出PN+MN的值.
15、1
【解析】
根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是1时经过B,则AB=1-4=4,当直线经过D点,设其交AB与E,则DE=2 ,作DF⊥AB于点F.利用三角函数即可求得DF即平行四边形的高,然后利用平行四边形的面积公式即可求解
【详解】
解:由图象可知,当移动距离为4时,直线经过点A,当移动距离为7时,直线经过点D,移动距离为1时,直线经过点B,
则AB=1﹣4=4,
当直线经过点D,设其交AB于点E,则DE=2 ,作DF⊥AB于点F,
∵y=﹣x于x轴负方向成45°角,且AB∥x轴,
∴∠DEF=45°,
∴DF=EF,
∴在直角三角形DFE中,DF2+EF2=DE2,
∴2DF2=1
∴DF=2,
那么ABCD面积为:AB•DF=4×2=1,
故答案为1.
【点睛】
此题主要考查平行四边形的性质和一次函数图象与几何变换,解题关键在于利用好辅助线
16、将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度
【解析】
根据图形的旋转和平移性质即可解题.
【详解】
解:将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度即可得到A′B′、
【点睛】
本题考查了旋转和平移,属于简单题,熟悉旋转和平移的概念是解题关键.
17、小李.
【解析】
解:根据图中的信息找出波动性大的即可:根据图中的信息可知,小李的成绩波动性大,则这两人中的新手是小李.
故答案为:小李.
18、22.5
【解析】
连接半径OC,先根据点C为的中点,得∠BOC=45°,再由同圆的半径相等和等腰三角形的性质得:∠A=∠ACO=×45°,可得结论.
【详解】
连接OC,
∵OE⊥AB,
∴∠EOB=90°,
∵点C为的中点,
∴∠BOC=45°,
∵OA=OC,
∴∠A=∠ACO=×45°=22.5°,
故答案为:22.5°.
【点睛】
本题考查了圆周角定理与等腰三角形的性质.解题的关键是注意掌握数形结合思想的应用.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、
【解析】
过点C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD==x,根据AD+BD=AB列方程求解可得.
【详解】
解:过点C作CD⊥AB于点D,
设CD=x,
∵∠CBD=45°,
∴BD=CD=x,
在Rt△ACD中,
∵,
∴AD====x,
由AD+BD=AB可得x+x=10,
解得:x=5﹣5,
答:飞机飞行的高度为(5﹣5)km.
20、(1)45°;(2)见解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°;②36或.
【解析】
(1)易得△ABC是等腰直角三角形,从而∠BAC=∠CBA=45°;
(2)分当 B在PA的中垂线上,且P在右时;B在PA的中垂线上,且P在左;A在PB的中垂线上,且P在右时;A在PB的中垂线上,且P在左时四中情况求解;
(3)①先说明四边形OHEF是正方形,再利用△DOH∽△DFE求出EF的长,然后利用割补法求面积;
②根据△EPC∽△EBA可求PC=4,根据△PDC∽△PCA可求PD •PA=PC2=16,再根据S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面积公式求解.
【详解】
(1)解:(1)连接BC,
∵AB是直径,
∴∠ACB=90°.
∴△ABC是等腰直角三角形,
∴∠BAC=∠CBA=45°;
(2)解:∵,
∴∠CDB=∠CDP=45°,CB= CA,
∴CD平分∠BDP
又∵CD⊥BP,
∴BE=EP,
即CD是PB的中垂线,
∴CP=CB= CA,
(3)① (Ⅰ)如图2,当 B在PA的中垂线上,且P在右时,∠ACD=15°;
(Ⅱ)如图3,当B在PA的中垂线上,且P在左,∠ACD=105°;
(Ⅲ)如图4,A在PB的中垂线上,且P在右时∠ACD=60°;
(Ⅳ)如图5,A在PB的中垂线上,且P在左时∠ACD=120°
②(Ⅰ)如图6, ,
.
(Ⅱ)如图7, ,
,
.
,
.
,
,
,
.
设BD=9k,PD=2k,
,
,
,
.
【点睛】
本题是圆的综合题,熟练掌握30°角所对的直角边等于斜边的一半,平行线的性质,垂直平分线的性质,相似三角形的判定与性质,圆周角定理,圆内接四边形的性质,勾股定理,同底等高的三角形的面积相等是解答本题的关键.
21、(1)-1;(2).
【解析】
(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;
(2)先化简原式,然后将a的值代入即可求出答案.
【详解】
(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1;
(2)原式=+
=
当a=﹣2+时,原式==.
【点睛】
本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.
22、(1)BG=AE.(2)①成立BG=AE.证明见解析.②AF=.
【解析】
(1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;
(2)①如图2,连接AD,由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;
②由①可知BG=AE,当BG取得最大值时,AE取得最大值,由勾股定理就可以得出结论.
【详解】
(1)BG=AE.
理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,
∴AD⊥BC,BD=CD,
∴∠ADB=∠ADC=90°.
∵四边形DEFG是正方形,
∴DE=DG.
在△BDG和△ADE中,
BD=AD,∠BDG=∠ADE,GD=ED,
∴△ADE≌△BDG(SAS),
∴BG=AE.
故答案为BG=AE;
(2)①成立BG=AE.
理由:如图2,连接AD,
∵在Rt△BAC中,D为斜边BC中点,
∴AD=BD,AD⊥BC,
∴∠ADG+∠GDB=90°.
∵四边形EFGD为正方形,
∴DE=DG,且∠GDE=90°,
∴∠ADG+∠ADE=90°,
∴∠BDG=∠ADE.
在△BDG和△ADE中,
BD=AD,∠BDG=∠ADE,GD=ED,
∴△BDG≌△ADE(SAS),
∴BG=AE;
②∵BG=AE,
∴当BG取得最大值时,AE取得最大值.
如图3,当旋转角为270°时,BG=AE.
∵BC=DE=4,
∴BG=2+4=6.
∴AE=6.
在Rt△AEF中,由勾股定理,得
AF= =,
∴AF=2 .
【点睛】
本题考查的知识点是全等三角形的判定与性质及勾股定理及正方形的性质和等腰直角三角形,解题的关键是熟练的掌握全等三角形的判定与性质及勾股定理以及正方形的性质和等腰直角三角形.
23、1.
【解析】
直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.
【详解】
解:原式=2+2+1﹣4×
=2+2+1﹣2
=1.
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
24、(1);(2)k=-3
【解析】
(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0;(2)依题意x1+x2=2(k-1),x1·x2=k2
以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1;②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1);
【详解】
解:(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0
解得
(2)依题意x1+x2=2(k-1),x1·x2=k2
以下分两种情况讨论:
①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1
解得k1=k2=1
∵
∴k1=k2=1不合题意,舍去
②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1)
解得k1=1,k2=-3
∵
∴k=-3
综合①、②可知k=-3
【点睛】
一元二次方程根与系数关系,根判别式.
25、(1)
平均数(分)
中位数(分)
众数(分)
初中部
85
85
85
高中部
85
80
100
(2)初中部成绩好些(3)初中代表队选手成绩较为稳定
【解析】
解:(1)填表如下:
平均数(分)
中位数(分)
众数(分)
初中部
85
85
85
高中部
85
80
100
(2)初中部成绩好些.
∵两个队的平均数都相同,初中部的中位数高,
∴在平均数相同的情况下中位数高的初中部成绩好些.
(3)∵,
,
∴<,因此,初中代表队选手成绩较为稳定.
(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答.
(2)根据平均数和中位数的统计意义分析得出即可.
(3)分别求出初中、高中部的方差比较即可.
26、通信塔CD的高度约为15.9cm.
【解析】
过点A作AE⊥CD于E,设CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出关于x的方程,求出方程的解即可.
【详解】
过点A作AE⊥CD于E,
则四边形ABDE是矩形,
设CE=xcm,
在Rt△AEC中,∠AEC=90°,∠CAE=30°,
所以AE=xcm,
在Rt△CDM中,CD=CE+DE=CE+AB=(x+6)cm,
DM=cm,
在Rt△ABM中,BM=cm,
∵AE=BD,
∴,
解得:x=+3,
∴CD=CE+ED=+9≈15.9(cm),
答:通信塔CD的高度约为15.9cm.
【点睛】
本题考查了解直角三角形,能通过解直角三角形求出AE、BM的长度是解此题的关键.
27、见解析
【解析】
以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AC的交点即为所求作的点.
【详解】
解:如图,点E即为所求作的点.
【点睛】
本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作DE∥BC并熟练掌握做一个角等于已知角的作法式解题的关键.
海南海口市琼山区国兴中学2021-2022学年中考一模数学试题含解析: 这是一份海南海口市琼山区国兴中学2021-2022学年中考一模数学试题含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,如图所示,有一条线段是.,不等式﹣x+1>3的解集是等内容,欢迎下载使用。
2022年海南省海口市琼山区重点中学初中数学毕业考试模拟冲刺卷含解析: 这是一份2022年海南省海口市琼山区重点中学初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了下列各式计算正确的是,下列分式是最简分式的是等内容,欢迎下载使用。
2021-2022学年海南海口市重点达标名校毕业升学考试模拟卷数学卷含解析: 这是一份2021-2022学年海南海口市重点达标名校毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了点P,一元二次方程的根是,下列运算结果正确的是,分式方程=1的解为,下列计算正确的是等内容,欢迎下载使用。