|试卷下载
终身会员
搜索
    上传资料 赚现金
    河北省保定市满城县达标名校2022年中考数学最后冲刺模拟试卷含解析
    立即下载
    加入资料篮
    河北省保定市满城县达标名校2022年中考数学最后冲刺模拟试卷含解析01
    河北省保定市满城县达标名校2022年中考数学最后冲刺模拟试卷含解析02
    河北省保定市满城县达标名校2022年中考数学最后冲刺模拟试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北省保定市满城县达标名校2022年中考数学最后冲刺模拟试卷含解析

    展开
    这是一份河北省保定市满城县达标名校2022年中考数学最后冲刺模拟试卷含解析,共22页。

    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列函数中,当x>0时,y值随x值增大而减小的是( )
    A.y=x2B.y=x﹣1C.D.
    2.的倒数是( )
    A.﹣B.2C.﹣2D.
    3.下列各组数中,互为相反数的是( )
    A.﹣2 与2B.2与2C.3与D.3与3
    4.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为( )
    A.3×109B.3×108C.30×108D.0.3×1010
    5.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为( )
    A.5B.6C.7D.8
    6.如图,是半圆圆的直径,的两边分别交半圆于,则为的中点,已知,则( )
    A.B.C.D.
    7.如图,在△ABC中,AB=5,AC=4,∠A=60°,若边AC的垂直平分线DE交AB于点D,连接CD,则△BDC的周长为( )
    A.8B.9C.5+D.5+
    8.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是
    A.有两个相等的实数根B.有两个异号的实数根
    C.有两个不相等的实数根D.没有实数根
    9.已知抛物线y=ax2+bx+c与x轴交于(x1,0)、(x2,0)两点,且01;②a+b<2;③3a+b>0;④a<-1,其中正确结论的个数为( )
    A.1个B.2个C.3个D.4个
    10.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )
    A.B.C.D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则Sn可表示为________.(用含n的代数式表示,其中n为正整数)
    12.已知x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是______.
    13.已知抛物线 的部分图象如图所示,根据函数图象可知,当 y>0 时,x 的取值范围是__.
    14.的相反数是_____,倒数是_____,绝对值是_____
    15.将一张长方形纸片折叠成如图所示的形状,若∠DBC=56°,则∠1=_____°.
    16.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是________.
    17.在△ABC中,点D在边BC上,且BD:DC=1:2,如果设=, =,那么等于__(结果用、的线性组合表示).
    三、解答题(共7小题,满分69分)
    18.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),其中点B(3,0),与y轴交于点C(0,3).
    (1)求抛物线的解析式;
    (2)将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;
    (3)设点P是抛物线上且在x轴上方的任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.
    19.(5分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.求证:△BDE≌△BCE;试判断四边形ABED的形状,并说明理由.
    20.(8分)如图,中,于,点分别是的中点.
    (1)求证:四边形是菱形
    (2)如果,求四边形的面积
    21.(10分)如图所示,在△ABC中,BO、CO是角平分线.∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.若∠A=n°,求∠BOC的度数.
    22.(10分)如图,在的矩形方格纸中,每个小正方形的边长均为,线段的两个端点均在小正方形的顶点上.
    在图中画出以线段为底边的等腰,其面积为,点在小正方形的顶点上;在图中面出以线段为一边的,其面积为,点和点均在小正方形的顶点上;连接,并直接写出线段的长.
    23.(12分)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.判断直线CD和⊙O的位置关系,并说明理由.过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.
    24.(14分)如图,在▱ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并廷长交BC于点E,连接EF
    (1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;
    (2)若AB=2,AE=2,求∠BAD的大小.
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    A、、∵y=x2,∴对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x的增大而减小,故此选项错误
    B、k>0,y随x增大而增大,故此选项错误
    C、B、k>0,y随x增大而增大,故此选项错误
    D、y=(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,故此选项正确
    2、B
    【解析】
    根据乘积是1的两个数叫做互为倒数解答.
    【详解】
    解:∵×1=1
    ∴的倒数是1.
    故选B.
    【点睛】
    本题考查了倒数的定义,是基础题,熟记概念是解题的关键.
    3、A
    【解析】
    根据只有符号不同的两数互为相反数,可直接判断.
    【详解】
    -2与2互为相反数,故正确;
    2与2相等,符号相同,故不是相反数;
    3与互为倒数,故不正确;
    3与3相同,故不是相反数.
    故选:A.
    【点睛】
    此题主要考查了相反数,关键是观察特点是否只有符号不同,比较简单.
    4、A
    【解析】
    科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
    【详解】
    将数据30亿用科学记数法表示为,
    故选A.
    【点睛】
    此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
    5、C
    【解析】
    作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.
    【详解】
    解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,
    设D(x,),
    ∵四边形ABCD是正方形,
    ∴AD=CD=BC,∠ADC=∠DCB=90°,
    易得△AGD≌△DHC≌△CMB(AAS),
    ∴AG=DH=﹣x﹣1,
    ∴DG=BM,
    ∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,
    由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,
    解得x=﹣2,
    ∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,
    ∵AG=DH=﹣1﹣x=1,
    ∴点E的纵坐标为﹣4,
    当y=﹣4时,x=﹣,
    ∴E(﹣,﹣4),
    ∴EH=2﹣=,
    ∴CE=CH﹣HE=4﹣=,
    ∴S△CEB=CE•BM=××4=7;
    故选C.
    【点睛】
    考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题.
    6、C
    【解析】
    连接AE,只要证明△ABC是等腰三角形,AC=AB即可解决问题.
    【详解】
    解:如图,连接AE,
    ∵AB是直径,
    ∴∠AEB=90°,即AE⊥BC,
    ∵EB=EC,
    ∴AB=AC,
    ∴∠C=∠B,
    ∵∠BAC=50°,
    ∴∠C= (180°-50°)=65°,
    故选:C.
    【点睛】
    本题考查了圆周角定理、等腰三角形的判定和性质、线段的垂直平分线的性质定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
    7、C
    【解析】
    过点C作CM⊥AB,垂足为M,根据勾股定理求出BC的长,再根据DE是线段AC的垂直平分线可得△ADC等边三角形,则CD=AD=AC=4,代入数值计算即可.
    【详解】
    过点C作CM⊥AB,垂足为M,
    在Rt△AMC中,
    ∵∠A=60°,AC=4,
    ∴AM=2,MC=2,
    ∴BM=AB-AM=3,
    在Rt△BMC中,
    BC===,
    ∵DE是线段AC的垂直平分线,
    ∴AD=DC,
    ∵∠A=60°,
    ∴△ADC等边三角形,
    ∴CD=AD=AC=4,
    ∴△BDC的周长=DB+DC+BC=AD+DB+BC=AB+BC=5+.
    故答案选C.
    【点睛】
    本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运算.
    8、A
    【解析】
    根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.
    【详解】
    ∵函数的顶点的纵坐标为4,
    ∴直线y=4与抛物线只有一个交点,
    ∴方程ax2+bx+c﹣4=0有两个相等的实数根,
    故选A.
    【点睛】
    本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.
    9、A
    【解析】
    如图,
    且图像与y轴交于点,
    可知该抛物线的开口向下,即,
    ①当时,

    故①错误.
    ②由图像可知,当时,


    故②错误.
    ③∵
    ∴,
    又∵,
    ∴,
    ∴,
    ∴,
    故③错误;
    ④∵,,
    又∵,
    ∴.
    故④正确.
    故答案选A.
    【点睛】
    本题考查二次函数系数符号的确定由抛物线的开口方向、对称轴和抛物线与坐标轴的交点确定.
    10、C
    【解析】
    A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选C.
    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    试题解析:如图,连接D1E1,设AD1、BE1交于点M,
    ∵AE1:AC=1:(n+1),
    ∴S△ABE1:S△ABC=1:(n+1),
    ∴S△ABE1=,
    ∵,
    ∴,
    ∴S△ABM:S△ABE1=(n+1):(2n+1),
    ∴S△ABM:=(n+1):(2n+1),
    ∴Sn=.
    故答案为.
    12、6
    【解析】
    已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,根据方程解的定义及根与系数的关系可得x12﹣2 x1﹣1=0, x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2 x1+1, x22=2 x2+1,代入所给的代数式,再利用完全平方公式变形,整体代入求值即可.
    【详解】
    ∵x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,
    ∴x12﹣2 x1﹣1=0, x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,
    即x12=2 x1+1, x22=2 x2+1,
    ∴=
    故答案为6.
    【点睛】
    本题考查了一元二次方程解的定义及根与系数的关系,会熟练运用整体思想是解决本题的关键.
    13、
    【解析】
    根据抛物线的对称轴以及抛物线与x轴的一个交点,确定抛物线与x轴的另一个交点,再结合图象即可得出答案.
    【详解】
    解:根据二次函数图象可知:
    抛物线的对称轴为直线,与x轴的一个交点为(-1,0),
    ∴抛物线与x轴的另一个交点为(3,0),
    结合图象可知,当 y>0 时,即x轴上方的图象,对应的x 的取值范围是,
    故答案为: .
    【点睛】
    本题考查了二次函数与不等式的问题,解题的关键是通过图象确定抛物线与x轴的另一个交点,并熟悉二次函数与不等式的关系.
    14、 ,
    【解析】
    ∵只有符号不同的两个数是互为相反数,
    ∴的相反数是;
    ∵乘积为1的两个数互为倒数,
    ∴的倒数是;
    ∵负数得绝对值是它的相反数,
    ∴绝对值是
    故答案为(1). (2). (3).
    15、62
    【解析】
    根据折叠的性质得出∠2=∠ABD,利用平角的定义解答即可.
    【详解】
    解:如图所示:
    由折叠可得:∠2=∠ABD,
    ∵∠DBC=56°,
    ∴∠2+∠ABD+56°=180°,
    解得:∠2=62°,
    ∵AE//BC,
    ∴∠1=∠2=62°,
    故答案为62.
    【点睛】
    本题考查了折叠变换的知识以及平行线的性质的运用,根据折叠的性质得出∠2=∠ABD是关键.
    16、20
    【解析】
    先设出白球的个数,根据白球的频率求出白球的个数,再用总的个数减去白球的个数即可.
    【详解】
    设黄球的个数为x个,
    ∵共有黄色、白色的乒乓球50个,黄球的频率稳定在60%,
    ∴=60%,
    解得x=30,
    ∴布袋中白色球的个数很可能是50-30=20(个).
    故答案为:20.
    【点睛】
    本题考查了利用频率估计概率,熟练掌握该知识点是本题解题的关键.
    17、
    【解析】
    根据三角形法则求出即可解决问题;
    【详解】
    如图,
    ∵=, =,
    ∴=+=-,
    ∵BD=BC,
    ∴=.
    故答案为.
    【点睛】
    本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.
    三、解答题(共7小题,满分69分)
    18、(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)
    【解析】
    (1)抛物线的对称轴x=1、B(3,0)、A在B的左侧,根据二次函数图象的性质可知A(-1,0);
    根据抛物线y=ax2+bx+c过点C(0,3),可知c的值.结合A、B两点的坐标,利用待定系数法求出a、b的值,可得抛物线L的表达式;
    (2)由C、B两点的坐标,利用待定系数法可得CB的直线方程.对抛物线配方,还可进一步确定抛物线的顶点坐标;通过分析h为何值时抛物线顶点落在BC上、落在OB上,就能得到抛物线的顶点落在△OBC内(包括△OBC的边界)时h的取值范围.
    (3)设P(m,﹣m2+2m+3),过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,
    通过证明△BNP≌△PMQ求解即可.
    【详解】
    (1)把点B(3,0),点C(0,3)代入抛物线y=﹣x2+bx+c中得:,
    解得:,
    ∴抛物线的解析式为:y=﹣x2+2x+3;
    (2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即抛物线的对称轴是:x=1,
    设原抛物线的顶点为D,
    ∵点B(3,0),点C(0,3).
    易得BC的解析式为:y=﹣x+3,
    当x=1时,y=2,
    如图1,当抛物线的顶点D(1,2),此时点D在线段BC上,抛物线的解析式为:y=﹣(x﹣1)2+2=﹣x2+2x+1,
    h=3﹣1=2,
    当抛物线的顶点D(1,0),此时点D在x轴上,抛物线的解析式为:y=﹣(x﹣1)2+0=﹣x2+2x﹣1,
    h=3+1=4,
    ∴h的取值范围是2≤h≤4;
    (3)设P(m,﹣m2+2m+3),
    如图2,△PQB是等腰直角三角形,且PQ=PB,
    过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,
    易得△BNP≌△PMQ,
    ∴BN=PM,
    即﹣m2+2m+3=m+3,
    解得:m1=0(图3)或m2=1,
    ∴P(1,4)或(0,3).
    【点睛】
    本题主要考查了待定系数法求二次函数和一次函数的解析式、二次函数的图象与性质、二次函数与一元二次方程的联系、全等三角形的判定与性质等知识点.解(1)的关键是掌握待定系数法,解(2)的关键是分顶点落在BC上和落在OB上求出h的值,解(3)的关键是证明△BNP≌△PMQ.
    19、证明见解析.
    【解析】
    (1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;
    (2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.
    【详解】
    (1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,
    ∴DB=CB,∠ABD=∠EBC,∠ABE=60°,
    ∵AB⊥EC,
    ∴∠ABC=90°,
    ∴∠DBE=∠CBE=30°,
    在△BDE和△BCE中,
    ∵,
    ∴△BDE≌△BCE;
    (2)四边形ABED为菱形;
    由(1)得△BDE≌△BCE,
    ∵△BAD是由△BEC旋转而得,
    ∴△BAD≌△BEC,
    ∴BA=BE,AD=EC=ED,
    又∵BE=CE,
    ∴BA=BE=ED= AD
    ∴四边形ABED为菱形.
    考点:旋转的性质;全等三角形的判定与性质;菱形的判定.
    20、 (1)证明见解析;(2).
    【解析】
    (1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;
    (2)根据等边三角形的性质得出EF=5,AD=5,进而得到菱形AEDF的面积S.
    【详解】
    解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,
    ∴Rt△ABD中,DE=AB=AE,
    Rt△ACD中,DF=AC=AF,
    又∵AB=AC,点E、F分别是AB、AC的中点,
    ∴AE=AF,
    ∴AE=AF=DE=DF,
    ∴四边形AEDF是菱形;
    (2)如图,
    ∵AB=AC=BC=10,
    ∴EF=5,AD=5,
    ∴菱形AEDF的面积S=EF•AD=×5×5=.
    【点睛】
    本题考查菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.
    21、(1)125°;(2)125°;(3)∠BOC=90°+n°.
    【解析】
    如图,由BO、CO是角平分线得∠ABC=2∠1,∠ACB=2∠2,再利用三角形内角和得到∠ABC+∠ACB+∠A=180°,则2∠1+2∠2+∠A=180°,接着再根据三角形内角和得到∠1+∠2+∠BOC=180°,利用等式的性质进行变换可得∠BOC=90°+∠A,然后根据此结论分别解决(1)、(2)、(3).
    【详解】
    如图,
    ∵BO、CO是角平分线,
    ∴∠ABC=2∠1,∠ACB=2∠2,
    ∵∠ABC+∠ACB+∠A=180°,
    ∴2∠1+2∠2+∠A=180°,
    ∵∠1+∠2+∠BOC=180°,
    ∴2∠1+2∠2+2∠BOC=360°,
    ∴2∠BOC﹣∠A=180°,
    ∴∠BOC=90°+∠A,
    (1)∵∠ABC=50°,∠ACB=60°,
    ∴∠A=180°﹣50°﹣60°=70°,
    ∴∠BOC=90°+×70°=125°;
    (2)∠BOC=90°+∠A=125°;
    (3)∠BOC=90°+n°.
    【点睛】
    本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数:①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.
    22、(1)见解析;(2)见解析;(3)见解析,.
    【解析】
    (1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.
    【详解】
    解:(1)如图所示;
    (2)如图所示;(3)如图所示;CE=.
    【点睛】
    本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.
    23、解:(1)直线CD和⊙O的位置关系是相切,理由见解析
    (2)BE=1.
    【解析】
    试题分析:(1)连接OD,可知由直径所对的圆周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD可得∠CDA+∠ADO=90°,从而得∠CDO=90°,根据切线的判定即可得出;
    (2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可.
    试题解析:(1)直线CD和⊙O的位置关系是相切,
    理由是:连接OD,
    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∴∠DAB+∠DBA=90°,
    ∵∠CDA=∠CBD,
    ∴∠DAB+∠CDA=90°,
    ∵OD=OA,
    ∴∠DAB=∠ADO,
    ∴∠CDA+∠ADO=90°,
    即OD⊥CE,
    ∴直线CD是⊙O的切线,
    即直线CD和⊙O的位置关系是相切;
    (2)∵AC=2,⊙O的半径是3,
    ∴OC=2+3=5,OD=3,
    在Rt△CDO中,由勾股定理得:CD=4,
    ∵CE切⊙O于D,EB切⊙O于B,
    ∴DE=EB,∠CBE=90°,
    设DE=EB=x,
    在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,
    则(4+x)2=x2+(5+3)2,
    解得:x=1,
    即BE=1.
    考点:1、切线的判定与性质;2、切线长定理;3、勾股定理;4、圆周角定理
    24、 (1)见解析;(2) 60°.
    【解析】
    (1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明;
    (2)连结BF,交AE于G.根据菱形的性质得出AB=2,AG=AE=,∠BAF=2∠BAE,AE⊥BF.然后解直角△ABG,求出∠BAG=30°,那么∠BAF=2∠BAE=60°.
    【详解】
    解:(1)在△AEB和△AEF中,

    ∴△AEB≌△AEF,
    ∴∠EAB=∠EAF,
    ∵AD∥BC,
    ∴∠EAF=∠AEB=∠EAB,
    ∴BE=AB=AF.
    ∵AF∥BE,
    ∴四边形ABEF是平行四边形,
    ∵AB=BE,
    ∴四边形ABEF是菱形;
    (2)连结BF,交AE于G.
    ∵AB=AF=2,
    ∴GA=AE=×2=,
    在Rt△AGB中,cs∠BAE==,
    ∴∠BAG=30°,
    ∴∠BAF=2∠BAG=60°,
    【点睛】
    本题考查了平行四边形的性质与菱形的判定与性质,解题的关键是熟练的掌握平行四边形的性质与菱形的判定与性质.
    相关试卷

    2022届云南省罗平县重点达标名校中考数学最后冲刺模拟试卷含解析: 这是一份2022届云南省罗平县重点达标名校中考数学最后冲刺模拟试卷含解析,共26页。试卷主要包含了答题时请按要求用笔,已知点A,若a+b=3,,则ab等于等内容,欢迎下载使用。

    2022届山东省冠县重点达标名校中考数学最后冲刺模拟试卷含解析: 这是一份2022届山东省冠县重点达标名校中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,分式方程=1的解为等内容,欢迎下载使用。

    扬州市达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份扬州市达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列各数中,最小的数是,正比例函数y=,下列式子一定成立的是,解分式方程﹣3=时,去分母可得等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map