年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    贵州省铜仁地区名校2021-2022学年中考数学猜题卷含解析

    贵州省铜仁地区名校2021-2022学年中考数学猜题卷含解析第1页
    贵州省铜仁地区名校2021-2022学年中考数学猜题卷含解析第2页
    贵州省铜仁地区名校2021-2022学年中考数学猜题卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    贵州省铜仁地区名校2021-2022学年中考数学猜题卷含解析

    展开

    这是一份贵州省铜仁地区名校2021-2022学年中考数学猜题卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列运算正确的是( )
    A.(a2)3=a5B.(a-b)2=a2-b2C.3=3D.=-3
    2.现有三张背面完全相同的卡片,正面分别标有数字﹣1,﹣2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是( )
    A.B.C.D.
    3.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
    A.B.C.D.
    4.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是
    A. B. C. D.
    5.如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是( )
    A.y=﹣2x+1B.y=﹣x+2C.y=﹣3x﹣2D.y=﹣x+2
    6.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=与一次函数y=bx﹣c在同一坐标系内的图象大致是( )
    A.B.C.D.
    7.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是( )
    A.B.C.D.
    8.下列运算正确的是( )
    A.x4+x4=2x8 B.(x2)3=x5 C.(x﹣y)2=x2﹣y2 D.x3•x=x4
    9.平面上直线a、c与b相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )
    A.60°B.50°C.40°D.30°
    10.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )
    A.B.C.D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.
    12.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠A=____°.
    13.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是_____.
    14.如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,……,依次下去.则点B6的坐标____________.
    15.如图,点P的坐标为(2,2),点A,B分别在x轴,y轴的正半轴上运动,且∠APB=90°.下列结论:
    ①PA=PB;
    ②当OA=OB时四边形OAPB是正方形;
    ③四边形OAPB的面积和周长都是定值;
    ④连接OP,AB,则AB>OP.
    其中正确的结论是_____.(把你认为正确结论的序号都填上)
    16.如图,抛物线交轴于,两点,交轴于点,点关于抛物线的对称轴的对称点为,点,分别在轴和轴上,则四边形周长的最小值为__________.
    17.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是 尺.
    三、解答题(共7小题,满分69分)
    18.(10分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.
    19.(5分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(-3,m+8),B(n,-6)两点.
    (1)求一次函数与反比例函数的解析式;
    (2)求△AOB的面积.
    20.(8分)先化简,再求值:(1+)÷,其中x=+1.
    21.(10分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/下降到12月份的11340元/.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/?请说明理由
    22.(10分)如图所示,PB是⊙O的切线,B为切点,圆心O在PC上,∠P=30°,D为弧BC的中点.
    (1)求证:PB=BC;
    (2)试判断四边形BOCD的形状,并说明理由.
    23.(12分)如图,在Rt△ABC中,CD,CE分别是斜边AB上的高,中线,BC=a,AC=b.若a=3,b=4,求DE的长;直接写出:CD= (用含a,b的代数式表示);若b=3,tan∠DCE=,求a的值.
    24.(14分)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.第一批该款式T恤衫每件进价是多少元?老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    试题分析:A、原式=a6,错误;B、原式=a2﹣2ab+b2,错误;C、原式不能合并,错误;
    D、原式=﹣3,正确,故选D
    考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式.
    2、D
    【解析】
    先找出全部两张卡片正面数字之和情况的总数,再先找出全部两张卡片正面数字之和为正数情况的总数,两者的比值即为所求概率.
    【详解】
    任取两张卡片,数字之和一共有﹣3、2、1三种情况,其中和为正数的有2、1两种情况,所以这两张卡片正面数字之和为正数的概率是.故选D.
    【点睛】
    本题主要考查概率的求法,熟练掌握概率的求法是解题的关键.
    3、D
    【解析】
    过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.
    【详解】
    过C点作CD⊥AB,垂足为D.
    根据旋转性质可知,∠B′=∠B.
    在Rt△BCD中,tanB=,
    ∴tanB′=tanB=.
    故选D.
    【点睛】
    本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.
    4、A
    【解析】
    根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.
    【详解】
    根据x的不等式x-b>0恰有两个负整数解,可得x的负整数解为-1和-2


    综合上述可得
    故选A.
    【点睛】
    本题主要考查不等式的非整数解,关键在于非整数解的确定.
    5、D
    【解析】
    抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.
    【详解】
    当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.
    ∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);
    当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:,解得:.
    则这条直线解析式为y=﹣x+1.
    故选D.
    【点睛】
    本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键.
    6、C
    【解析】
    根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.
    【详解】
    解:观察二次函数图象可知:
    开口向上,a>1;对称轴大于1,>1,b<1;二次函数图象与y轴交点在y轴的正半轴,c>1.
    ∵反比例函数中k=﹣a<1,
    ∴反比例函数图象在第二、四象限内;
    ∵一次函数y=bx﹣c中,b<1,﹣c<1,
    ∴一次函数图象经过第二、三、四象限.
    故选C.
    【点睛】
    本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a、b、c的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.
    7、C
    【解析】
    首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.
    【详解】
    根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。
    故选:C.
    【点睛】
    此题考查函数的图象,解题关键在于观察图形
    8、D
    【解析】A. x4+x4=2x4 ,故错误;B. (x2)3=x6 ,故错误;C. (x﹣y)2=x2﹣2xy+y2 ,故错误; D. x3•x=x4
    ,正确,故选D.
    9、C
    【解析】
    先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论.
    【详解】
    解:∵∠1=180°﹣100°=80°,a∥c,
    ∴∠α=180°﹣80°﹣60°=40°.
    故选:C.
    【点睛】
    本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.
    10、B
    【解析】
    试题解析:列表如下:
    ∴共有20种等可能的结果,P(一男一女)=.
    故选B.
    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    解:连接AG,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,
    ∴DG=DC﹣CG=1,则AG==,
    ∵ ,∠ABG=∠CBE,
    ∴△ABG∽△CBE,
    ∴,
    解得,CE=,
    故答案为.
    【点睛】
    本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.
    12、50
    【解析】
    试题分析:连结EF,如图,根据圆内接四边形的性质得∠A+∠BCD=180°,根据对顶角相等得∠BCD=∠ECF,则∠A+∠ECF=180°,根据三角形内角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形内角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,则∠A+80°+∠A=180°,然后解方程即可.
    试题解析:连结EF,如图,
    ∵四边形ABCD内接于⊙O,
    ∴∠A+∠BCD=180°,
    而∠BCD=∠ECF,
    ∴∠A+∠ECF=180°,
    ∵∠ECF+∠1+∠2=180°,
    ∴∠1+∠2=∠A,
    ∵∠A+∠AEF+∠AFE=180°,
    即∠A+∠AEB+∠1+∠2+∠AFD=180°,
    ∴∠A+80°+∠A=180°,
    ∴∠A=50°.
    考点:圆内接四边形的性质.
    13、(2,0)
    【解析】
    【分析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE≌△PAF,根据PE=AF=3,列式可得结论.
    【详解】连接PB、PA,过B作BE⊥x轴于E,过A作AF⊥x轴于F,
    ∵A(m,﹣3)和点B(﹣1,n),
    ∴OE=1,AF=3,
    ∵∠ACB=45°,
    ∴∠APB=90°,
    ∴∠BPE+∠APF=90°,
    ∵∠BPE+∠EBP=90°,
    ∴∠APF=∠EBP,
    ∵∠BEP=∠AFP=90°,PA=PB,
    ∴△BPE≌△PAF,
    ∴PE=AF=3,
    设P(a,0),
    ∴a+1=3,
    a=2,
    ∴P(2,0),
    故答案为(2,0).
    【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.
    14、 (-1,0)
    【解析】
    根据已知条件由图中可以得到B1所在的正方形的对角线长为,B2所在的正方形的对角线长为()2,B3所在的正方形的对角线长为()3;B4所在的正方形的对角线长为()4;B5所在的正方形的对角线长为()5;可推出B6所在的正方形的对角线长为()6=1.又因为B6在x轴负半轴,所以B6(-1,0).
    解:如图所示
    ∵正方形OBB1C,
    ∴OB1=,B1所在的象限为第一象限;
    ∴OB2=()2,B2在x轴正半轴;
    ∴OB3=()3,B3所在的象限为第四象限;
    ∴OB4=()4,B4在y轴负半轴;
    ∴OB5=()5,B5所在的象限为第三象限;
    ∴OB6=()6=1,B6在x轴负半轴.
    ∴B6(-1,0).
    故答案为(-1,0).
    15、①②
    【解析】
    过P作PM⊥y轴于M,PN⊥x轴于N,得出四边形PMON是正方形,推出OM=OM=ON=PN=1,证△APM≌△BPN,可对①进行判断,推出AM=BN,求出OA+OB=ON+OM=2,当当OA=OB时,OA=OB=1,然后可对②作出判断,由△APM≌△BPN可对四边形OAPB的面积作出判断,由OA+OB=2,然后依据AP和PB的长度变化情况可对四边形OAPB的周长作出判断,求得AB的最大值以及OP的长度可对④作出判断.
    【详解】
    过P作PM⊥y轴于M,PN⊥x轴于N
    ∵P(1,1),
    ∴PN=PM=1.
    ∵x轴⊥y轴,
    ∴∠MON=∠PNO=∠PMO=90°,
    ∴∠MPN=360°-90°-90°-90°=90°,则四边形MONP是正方形,
    ∴OM=ON=PN=PM=1,
    ∵∠MPA=∠APB=90°,
    ∴∠MPA=∠NPB.
    ∵∠MPA=∠NPB,PM=PN,∠PMA=∠PNB,
    ∴△MPA≌△NPB,
    ∴PA=PB,故①正确.
    ∵△MPA≌△NPB,
    ∴AM=BN,
    ∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.
    当OA=OB时,OA=OB=1,则点A、B分别与点M、N重合,此时四边形OAPB是正方形,故②正确.
    ∵△MPA≌△NPB,
    ∴四边形OAPB的面积=四边形AONP的面积+△PNB的面积=四边形AONP的面积+△PMA的面积=正方形PMON的面积=2.
    ∵OA+OB=2,PA=PB,且PA和PB的长度会不断的变化,故周长不是定值,故③错误.
    ,∵∠AOB+∠APB=180°,
    ∴点A、O、B、P共圆,且AB为直径,所以
    AB≥OP,故④错误.
    故答案为:①②.
    【点睛】
    本题考查了全等三角形的性质和判定,三角形的内角和定理,坐标与图形性质,正方形的性质的应用,关键是推出AM=BN和推出OA+OB=OM+ON
    16、
    【解析】
    根据抛物线解析式求得点D(1,4)、点E(2,3),作点D关于y轴的对称点D′(﹣1,4)、作点E关于x轴的对称点E′(2,﹣3),从而得到四边形EDFG的周长=DE+DF+FG+GE=DE+D′F+FG+GE′,当点D′、F、G、E′四点共线时,周长最短,据此根据勾股定理可得答案.
    【详解】
    如图,
    在y=﹣x2+2x+3中,当x=0时,y=3,即点C(0,3),
    ∵y=﹣x2+2x+3=﹣(x-1)2+4,
    ∴对称轴为x=1,顶点D(1,4),
    则点C关于对称轴的对称点E的坐标为(2,3),
    作点D关于y轴的对称点D′(﹣1,4),作点E关于x轴的对称点E′(2,﹣3),
    连结D′、E′,D′E′与x轴的交点G、与y轴的交点F即为使四边形EDFG的周长最小的点,
    四边形EDFG的周长=DE+DF+FG+GE
    =DE+D′F+FG+GE′
    =DE+D′E′


    ∴四边形EDFG周长的最小值是.
    【点睛】
    本题主要考查抛物线的性质以及两点间的距离公式,解题的关键是熟练掌握抛物线的性质,利用数形结合得出答案.
    17、1.
    【解析】
    试题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题,根据勾股定理可求出葛藤长为=1(尺).
    故答案为1.
    考点:平面展开最短路径问题
    三、解答题(共7小题,满分69分)
    18、1
    【解析】
    先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.
    【详解】
    解:a3b+2a2b2+ab3
    =ab(a2+2ab+b2)
    =ab(a+b)2,
    将a+b=3,ab=2代入得,ab(a+b)2=2×32=1.
    故代数式a3b+2a2b2+ab3的值是1.
    19、(1)y=-,y=-2x-4(2)1
    【解析】
    (1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;
    (2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.
    【详解】
    (1)将A(﹣3,m+1)代入反比例函数y=得,
    =m+1,
    解得m=﹣6,
    m+1=﹣6+1=2,
    所以,点A的坐标为(﹣3,2),
    反比例函数解析式为y=﹣,
    将点B(n,﹣6)代入y=﹣得,﹣=﹣6,
    解得n=1,
    所以,点B的坐标为(1,﹣6),
    将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,

    解得,
    所以,一次函数解析式为y=﹣2x﹣4;
    (2)设AB与x轴相交于点C,
    令﹣2x﹣4=0解得x=﹣2,
    所以,点C的坐标为(﹣2,0),
    所以,OC=2,
    S△AOB=S△AOC+S△BOC,
    =×2×2+×2×6,
    =2+6,
    =1.
    考点:反比例函数与一次函数的交点问题.
    20、,1+
    【解析】
    运用公式化简,再代入求值.
    【详解】
    原式=

    = ,
    当x=+1时,
    原式=.
    【点睛】
    考查分式的化简求值、整式的化简求值,解答本题的关键是明确它们各自的计算方法.
    21、(1)10%;(1)会跌破10000元/m1.
    【解析】
    (1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;
    (1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断.
    【详解】
    (1)设11、11两月平均每月降价的百分率是x,
    则11月份的成交价是:14000(1-x),
    11月份的成交价是:14000(1-x)1,
    ∴14000(1-x)1=11340,
    ∴(1-x)1=0.81,
    ∴x1=0.1=10%,x1=1.9(不合题意,舍去)
    答:11、11两月平均每月降价的百分率是10%;
    (1)会跌破10000元/m1.
    如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:
    11340(1-x)1=11340×0.81=9184.5<10000,
    由此可知今年1月份该市的商品房成交均价会跌破10000元/m1.
    【点睛】
    此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.
    22、(1)见解析;(2)菱形
    【解析】
    试题分析:(1)由切线的性质得到∠OBP=90°,进而得到∠BOP=60°,由OC=BO,得到∠OBC=∠OCB=30°,由等角对等边即可得到结论;
    (2)由对角线互相垂直平分的四边形是菱形证明即可.
    试题解析:证明:(1)∵PB是⊙O的切线,∴∠OBP=90°,∠POB=90°-30°=60°.∵OB=OC,∴∠OBC=∠OCB.∵∠POB=∠OBC+∠OCB,∴∠OCB=30°=∠P,∴PB=BC;
    (2)连接OD交BC于点M.∵D是弧BC的中点,∴OD垂直平分BC.
    在直角△OMC中,∵∠OCM=30°,∴OC=2OM=OD,∴OM=DM,∴四边形BOCD是菱形.
    23、(1);(2);(3).
    【解析】
    (1)求出BE,BD即可解决问题.
    (2)利用勾股定理,面积法求高CD即可.
    (3)根据CD=3DE,构建方程即可解决问题.
    【详解】
    解:(1)在Rt△ABC中,∵∠ACB=91°,a=3,b=4,
    ∴.
    ∵CD,CE是斜边AB上的高,中线,
    ∴∠BDC=91°,.
    ∴在Rt△BCD中,
    (2)在Rt△ABC中,∵∠ACB=91°,BC=a,AC=b,
    故答案为:.
    (3)在Rt△BCD中,,
    ∴,
    又,
    ∴CD=3DE,即.
    ∵b=3,
    ∴2a=9﹣a2,即a2+2a﹣9=1.
    由求根公式得(负值舍去),
    即所求a的值是.
    【点睛】
    本题考查解直角三角形的应用,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    24、(1)第一批T恤衫每件的进价是90元;(2)剩余的T恤衫每件售价至少要80元.
    【解析】
    (1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x+9)元,再根据等量关系:第二批进的件数=第一批进的件数可得方程;
    (2)设剩余的T恤衫每件售价y元,由利润=售价﹣进价,根据第二批的销售利润不低于650元,可列不等式求解.
    【详解】
    解:(1)设第一批T恤衫每件进价是x元,由题意,得

    解得x=90
    经检验x=90是分式方程的解,符合题意.
    答:第一批T恤衫每件的进价是90元.
    (2)设剩余的T恤衫每件售价y元.
    由(1)知,第二批购进=50件.
    由题意,得120×50×+y×50×﹣4950≥650,
    解得y≥80.
    答:剩余的T恤衫每件售价至少要80元.

    相关试卷

    贵州省施秉县重点达标名校2021-2022学年中考数学猜题卷含解析:

    这是一份贵州省施秉县重点达标名校2021-2022学年中考数学猜题卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,二次函数y=ax2+bx﹣2,如果,那么代数式的值是,下列运算正确的是等内容,欢迎下载使用。

    安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析:

    这是一份安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析,共24页。试卷主要包含了答题时请按要求用笔,已知二次函数y=,在一组数据等内容,欢迎下载使用。

    2021-2022学年贵州省毕节市织金县重点名校中考猜题数学试卷含解析:

    这是一份2021-2022学年贵州省毕节市织金县重点名校中考猜题数学试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map