|试卷下载
终身会员
搜索
    上传资料 赚现金
    河北省廊坊市霸州市部分校2021-2022学年初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    河北省廊坊市霸州市部分校2021-2022学年初中数学毕业考试模拟冲刺卷含解析01
    河北省廊坊市霸州市部分校2021-2022学年初中数学毕业考试模拟冲刺卷含解析02
    河北省廊坊市霸州市部分校2021-2022学年初中数学毕业考试模拟冲刺卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北省廊坊市霸州市部分校2021-2022学年初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份河北省廊坊市霸州市部分校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,剪纸是我国传统的民间艺术等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列说法正确的是( )
    A.“买一张电影票,座位号为偶数”是必然事件
    B.若甲、乙两组数据的方差分别为S甲2=0.3,S乙2=0.1,则甲组数据比乙组数据稳定
    C.一组数据2,4,5,5,3,6的众数是5
    D.一组数据2,4,5,5,3,6的平均数是5
    2.如图,下列各数中,数轴上点A表示的可能是( )

    A.4的算术平方根 B.4的立方根 C.8的算术平方根 D.8的立方根
    3.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:
    x
    ﹣2
    ﹣1
    0
    1
    2
    y
    8
    3
    0
    ﹣1
    0
    则抛物线的顶点坐标是(  )
    A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)
    4.已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( )
    A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×109
    5.我国的钓鱼岛面积约为4400000m2,用科学记数法表示为(  )
    A.4.4×106 B.44×105 C.4×106 D.0.44×107
    6.天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为( )
    A.-=20 B.-=20
    C.-=20 D.
    7.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )

    A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°
    8.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的( )
    A.众数 B.中位数 C.平均数 D.方差
    9.如图,已知BD与CE相交于点A,ED∥BC,AB=8,AC=12,AD=6,那么AE的长等于( )

    A.4 B.9 C.12 D.16
    10.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.有一组数据:3,a,4,6,7,它们的平均数是5,则a=_____,这组数据的方差是_____.
    12.如果a+b=2,那么代数式(a﹣)÷的值是______.
    13.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=____.

    14.阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m=_____.
    15.如图,点E在正方形ABCD的外部,∠DCE=∠DEC,连接AE交CD于点F,∠CDE的平分线交EF于点G,AE=2DG.若BC=8,则AF=_____.

    16.计算:=_______.
    三、解答题(共8题,共72分)
    17.(8分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:

    (1)a=   ,b=   ,c=   ;
    (2)扇形统计图中表示C等次的扇形所对的圆心角的度数为   度;
    (3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.
    18.(8分)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:
    本次调查中,王老师一共调查了   名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.
    19.(8分)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.判断直线CD和⊙O的位置关系,并说明理由.过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.

    20.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.

    请结合以上信息解答下列问题:
    (1)m=   ;
    (2)请补全上面的条形统计图;
    (3)在图2中,“乒乓球”所对应扇形的圆心角的度数为   ;
    (4)已知该校共有1200名学生,请你估计该校约有   名学生最喜爱足球活动.
    21.(8分)如图,一次函数y=k1x+b(k1≠0)与反比例函数的图象交于点A(-1,2),B(m,-1).
    (1)求一次函数与反比例函数的解析式;
    (2)在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.

    22.(10分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.
    收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:
    排球
    10
    9.5
    9.5
    10
    8
    9
    9.5
    9

    7
    10
    4
    5.5
    10
    9.5
    9.5
    10
    篮球
    9.5
    9
    8.5
    8.5
    10
    9.5
    10
    8

    6
    9.5
    10
    9.5
    9
    8.5
    9.5
    6
    整理、描述数据:按如下分数段整理、描述这两组样本数据:
    (说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)
    分析数据:两组样本数据的平均数、中位数、众数如下表所示:
    项目
    平均数
    中位数
    众数
    排球
    8.75
    9.5
    10
    篮球
    8.81
    9.25
    9.5
    得出结论:
    (1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;
    (2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.
    你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)
    23.(12分)甲、乙、丙3名学生各自随机选择到A、B2个书店购书.
    (1)求甲、乙2名学生在不同书店购书的概率;
    (2)求甲、乙、丙3名学生在同一书店购书的概率.
    24.如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过A、C两点,与AB边交于点D.
    (1)求抛物线的函数表达式;
    (2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
    ①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
    ②当S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据确定性事件、方差、众数以及平均数的定义进行解答即可.
    【详解】
    解:A、“买一张电影票,座位号为偶数”是随机事件,此选项错误;
    B、若甲、乙两组数据的方差分别为S甲2=0.3,S乙2=0.1,则乙组数据比甲组数据稳定,此选项错误;
    C、一组数据2,4,5,5,3,6的众数是5,此选项正确;
    D、一组数据2,4,5,5,3,6的平均数是,此选项错误;
    故选:C.
    【点睛】
    本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    2、C
    【解析】
    解:由题意可知4的算术平方根是2,4的立方根是 <2, 8的算术平方根是, 2<<3,8的立方根是2,
    故根据数轴可知,
    故选C
    3、C
    【解析】
    分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标.
    详解:当或时,,当时,,
    ,解得 ,
    二次函数解析式为,
    抛物线的顶点坐标为,
    故选C.
    点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键.
    4、C
    【解析】
    分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.
    解答:解:将361 000 000用科学记数法表示为3.61×1.
    故选C.
    5、A
    【解析】4400000=4.4×1.故选A.
    点睛:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    6、C
    【解析】
    关键描述语是:“结果比用原价多买了1瓶”;等量关系为:原价买的瓶数-实际价格买的瓶数=1.
    【详解】
    原价买可买瓶,经过还价,可买瓶.方程可表示为:﹣=1.
    故选C.
    【点睛】
    考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意讨价前后商品的单价的变化.
    7、D
    【解析】
    根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.
    【详解】
    ∵直线EF∥GH,
    ∴∠2=∠ABC+∠1=30°+20°=50°,
    故选D.
    【点睛】
    本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
    8、B
    【解析】
    由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,只需知道中位数即可.
    【详解】
    由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,故应知道中位数是多少.
    故选B.
    【点睛】
    本题考查了统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的关键.
    9、B
    【解析】
    由于ED∥BC,可证得△ABC∽△ADE,根据相似三角形所得比例线段,即可求得AE的长.
    【详解】
    ∵ED∥BC,
    ∴△ABC∽△ADE,
    ∴ =,
    ∴ ==,
    即AE=9;
    ∴AE=9.
    故答案选B.
    【点睛】
    本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.
    10、A
    【解析】
    试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误.故选A.
    考点:中心对称图形;轴对称图形.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、5 1.
    【解析】
    ∵一组数据:3,a,4,6,7,它们的平均数是5,
    ∴,
    解得,,
    ∴=1.
    故答案为5,1.
    12、2
    【解析】
    分析:根据分式的运算法则即可求出答案.
    详解:当a+b=2时,
    原式=
    =
    =a+b
    =2
    故答案为:2
    点睛:本题考查分式的运算,解题的关键熟练运用分式的运算法则,本题属于基础题型.
    13、5
    【解析】
    试题分析:根据直角三角形斜边上的中线等于斜边的一半,可得CE=AB=5.
    考点:直角三角形斜边上的中线.
    14、6
    【解析】
    根据题意得,2m=3×4,解得m=6,故答案为6.
    15、
    【解析】
    如图作DH⊥AE于H,连接CG.设DG=x,

    ∵∠DCE=∠DEC,
    ∴DC=DE,
    ∵四边形ABCD是正方形,
    ∴AD=DC,∠ADF=90°,
    ∴DA=DE,
    ∵DH⊥AE,
    ∴AH=HE=DG,
    在△GDC与△GDE中,

    ∴△GDC≌△GDE(SAS),
    ∴GC=GE,∠DEG=∠DCG=∠DAF,
    ∵∠AFD=∠CFG,
    ∴∠ADF=∠CGF=90°,
    ∴2∠GDE+2∠DEG=90°,
    ∴∠GDE+∠DEG=45°,
    ∴∠DGH=45°,
    在Rt△ADH中,AD=8,AH=x,DH=x,
    ∴82=x2+(x)2,
    解得:x=,
    ∵△ADH∽△AFD,
    ∴,
    ∴AF==4.
    故答案为4.
    16、3
    【解析】
    先把化成,然后再合并同类二次根式即可得解.
    【详解】
    原式=2.
    故答案为
    【点睛】
    本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.

    三、解答题(共8题,共72分)
    17、(1)2、45、20;(2)72;(3)
    【解析】
    分析:(1)根据A等次人数及其百分比求得总人数,总人数乘以D等次百分比可得a的值,再用B、C等次人数除以总人数可得b、c的值;
    (2)用360°乘以C等次百分比可得;
    (3)画出树状图,由概率公式即可得出答案.
    详解:(1)本次调查的总人数为12÷30%=40人,
    ∴a=40×5%=2,b=×100=45,c=×100=20,
    (2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,
    (3)画树状图,如图所示:

    共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,
    故P(选中的两名同学恰好是甲、乙)=.
    点睛:此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.
    18、(1)20;(2)作图见试题解析;(3).
    【解析】
    (1)由A类的学生数以及所占的百分比即可求得答案;
    (2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;
    (3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.
    【详解】
    (1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);
    故答案为20;
    (2)∵C类女生:20×25%﹣2=3(名);
    D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);
    如图:

    (3)列表如下:A类中的两名男生分别记为A1和A2,

    男A1
    男A2
    女A
    男D
    男A1男D
    男A2男D
    女A男D
    女D
    男A1女D
    男A2女D
    女A女D
    共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:.
    19、解:(1)直线CD和⊙O的位置关系是相切,理由见解析
    (2)BE=1.
    【解析】
    试题分析:(1)连接OD,可知由直径所对的圆周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD可得∠CDA+∠ADO=90°,从而得∠CDO=90°,根据切线的判定即可得出;
    (2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可.
    试题解析:(1)直线CD和⊙O的位置关系是相切,
    理由是:连接OD,
    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∴∠DAB+∠DBA=90°,
    ∵∠CDA=∠CBD,
    ∴∠DAB+∠CDA=90°,
    ∵OD=OA,
    ∴∠DAB=∠ADO,
    ∴∠CDA+∠ADO=90°,
    即OD⊥CE,
    ∴直线CD是⊙O的切线,
    即直线CD和⊙O的位置关系是相切;
    (2)∵AC=2,⊙O的半径是3,
    ∴OC=2+3=5,OD=3,
    在Rt△CDO中,由勾股定理得:CD=4,
    ∵CE切⊙O于D,EB切⊙O于B,
    ∴DE=EB,∠CBE=90°,
    设DE=EB=x,
    在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,
    则(4+x)2=x2+(5+3)2,
    解得:x=1,
    即BE=1.

    考点:1、切线的判定与性质;2、切线长定理;3、勾股定理;4、圆周角定理
    20、(1)150,(2)36°,(3)1.
    【解析】
    (1)根据图中信息列式计算即可;
    (2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;
    (3)360°×乒乓球”所占的百分比即可得到结论;
    (4)根据题意计算即可.
    【详解】
    (1)m=21÷14%=150,
    (2)“足球“的人数=150×20%=30人,
    补全上面的条形统计图如图所示;
    (3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;
    (4)1200×20%=1人,
    答:估计该校约有1名学生最喜爱足球活动.
    故答案为150,36°,1.

    【点睛】
    本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.
    21、(1)反比例函数的解析式为;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
    【解析】
    (1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.
    (2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.
    【详解】
    (1)把A(-1,2)代入,得到k2=-2,
    ∴反比例函数的解析式为.
    ∵B(m,-1)在上,∴m=2,
    由题意,解得:,∴一次函数的解析式为y=-x+1.
    (2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
    【点睛】
    本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论.
    22、130 小明 平均数接近,而排球成绩的中位数和众数都较高.
    【解析】
    根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;
    根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论.
    【详解】
    解:补全表格成绩:
    人数
    项目




    10
    排球
    1
    1
    2
    7
    5
    篮球
    0
    2
    1
    10
    3
    达到优秀的人数约为(人);
    故答案为130;
    同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高答案不唯一,理由需支持判断结论
    故答案为小明,平均数接近,而排球成绩的中位数和众数都较高.
    【点睛】
    本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体.
    23、(1)P=;(2)P=.
    【解析】
    试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.
    试题解析:(1)甲、乙两名学生到A、B两个书店购书的所有可能结果有:

    从树状图可以看出,这两名学生到不同书店购书的可能结果有AB、BA共2种,
    所以甲乙两名学生在不同书店购书的概率P(甲、乙2名学生在不同书店购书)=;
    (2)甲、乙、丙三名学生AB两个书店购书的所有可能结果有:

    从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA、BBB共2种,
    所以甲乙丙到同一书店购书的概率P(甲、乙、丙3名学生在同一书店购书)=.
    点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    24、(1);(2)①,当m=5时,S取最大值;②满足条件的点F共有四个,坐标分别为,,,,
    【解析】
    (1)将A、C两点坐标代入抛物线y=-x2+bx+c,即可求得抛物线的解析式;
    (2)①先用m表示出QE的长度,进而求出三角形的面积S关于m的函数;
    ②直接写出满足条件的F点的坐标即可,注意不要漏写.
    【详解】
    解:(1)将A、C两点坐标代入抛物线,得 ,
    解得: ,
    ∴抛物线的解析式为y=﹣x2+x+8;
    (2)①∵OA=8,OC=6,
    ∴AC= =10,
    过点Q作QE⊥BC与E点,则sin∠ACB = = =,
    ∴ =,
    ∴QE=(10﹣m),
    ∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;
    ②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,
    ∴当m=5时,S取最大值;
    在抛物线对称轴l上存在点F,使△FDQ为直角三角形,
    ∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,
    D的坐标为(3,8),Q(3,4),
    当∠FDQ=90°时,F1(,8),
    当∠FQD=90°时,则F2(,4),
    当∠DFQ=90°时,设F(,n),
    则FD2+FQ2=DQ2,
    即+(8﹣n)2++(n﹣4)2=16,
    解得:n=6± ,
    ∴F3(,6+),F4(,6﹣),
    满足条件的点F共有四个,坐标分别为
    F1(,8),F2(,4),F3(,6+),F4(,6﹣).

    【点睛】
    本题考查二次函数的综合应用能力,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.

    相关试卷

    江苏省南通市部分校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份江苏省南通市部分校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共23页。试卷主要包含了二次函数y=ax2+bx﹣2,图为小明和小红两人的解题过程,下列计算中,正确的是等内容,欢迎下载使用。

    河南聚焦2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份河南聚焦2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共27页。试卷主要包含了考生要认真填写考场号和座位序号,计算的值为等内容,欢迎下载使用。

    河北省邯郸市临漳县2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份河北省邯郸市临漳县2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共20页。试卷主要包含了﹣的相反数是,若二次函数的图象经过点等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map