终身会员
搜索
    上传资料 赚现金

    河南省固始县联考2022年中考数学模拟预测试卷含解析

    立即下载
    加入资料篮
    河南省固始县联考2022年中考数学模拟预测试卷含解析第1页
    河南省固始县联考2022年中考数学模拟预测试卷含解析第2页
    河南省固始县联考2022年中考数学模拟预测试卷含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南省固始县联考2022年中考数学模拟预测试卷含解析

    展开

    这是一份河南省固始县联考2022年中考数学模拟预测试卷含解析,共18页。试卷主要包含了的绝对值是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是(  )

    A.12 B.14 C.16 D.18
    2.2018 年 1 月份,菏泽市市区一周空气质量报告中某项污染指数的数据是 41, 45,41,44,40,42,41,这组数据的中位数、众数分别是( )
    A.42,41 B.41,42 C.41,41 D.42,45
    3.平面直角坐标系内一点关于原点对称点的坐标是( )
    A. B. C. D.
    4.一组数据:6,3,4,5,7的平均数和中位数分别是 ( )
    A.5,5 B.5,6 C.6,5 D.6,6
    5.平面上直线a、c与b相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )

    A.60° B.50° C.40° D.30°
    6.如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中点,则CM的长为(  )

    A. B.2 C. D.3
    7.的绝对值是(  )
    A.﹣4 B. C.4 D.0.4
    8.2017年人口普查显示,河南某市户籍人口约为2536000人,则该市户籍人口数据用科学记数法可表示为(  )
    A.2.536×104人 B.2.536×105人 C.2.536×106人 D.2.536×107人
    9.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于(  )

    A.8 B.4 C.12 D.16
    10.如图,将△ABC沿着DE剪成一个小三角形ADE和一个四边形D'E'CB,若DE∥BC,四边形D'E'CB各边的长度如图所示,则剪出的小三角形ADE应是(  )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.因式分解:____________.
    12.如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,则tan∠DBE的值是_____.

    13.一元二次方程x2=3x的解是:________.
    14.如果2,那么=_____(用向量,表示向量).
    15.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是cm,那么围成的圆锥的高度是 cm.
    16.因式分解:=_______________.
    17.关于的方程有两个不相等的实数根,那么的取值范围是__________.
    三、解答题(共7小题,满分69分)
    18.(10分)2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化.某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图.请你根据图中提供的信息完成下列问题:
    (1)求被调查学生的人数,并将条形统计图补充完整;
    (2)求扇形统计图中的A等对应的扇形圆心角的度数;
    (3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?

    19.(5分)如图,已知AB是圆O的直径,弦CD⊥AB,垂足H在半径OB上,AH=5,CD=,点E在弧AD上,射线AE与CD的延长线交于点F.
    (1)求圆O的半径;
    (2)如果AE=6,求EF的长.

    20.(8分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.

    根据以上信息,解答下列问题:
    (1)这次调查一共抽取了 名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是 ;
    (2)请将条形统计图补充完整;
    (3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有 名.
    21.(10分)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.

    (1)判断直线l与⊙O的位置关系,并说明理由;
    (2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;
    (3)在(2)的条件下,若DE=4,DF=3,求AF的长.
    22.(10分)反比例函数在第一象限的图象如图所示,过点A(2,0)作x轴的垂线,交反比例函数的图象于点M,△AOM的面积为2.
    求反比例函数的解析式;设点B的坐标为(t,0),其中t>2.若以AB为一边的正方形有一个顶点在反比例函数的图象上,求t的值.
    23.(12分)在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.
    (1)求证:四边形BFDE是矩形;
    (2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.

    24.(14分)在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF.
    (1)说明△BEF是等腰三角形;
    (2)求折痕EF的长.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】

    延长线段BN交AC于E.
    ∵AN平分∠BAC,∴∠BAN=∠EAN.
    在△ABN与△AEN中,
    ∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,
    ∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.
    又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,
    ∴AC=AE+CE=10+6=16.故选C.
    2、C
    【解析】
    找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
    【详解】
    从小到大排列此数据为:40,1,1,1,42,44,45, 数据 1 出现了三次最多为众数,1 处在第 4 位为中位数.
    所以本题这组数据的中位数是 1,众数是 1.
    故选C.
    【点睛】
    考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
    3、D
    【解析】
    根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.
    【详解】
    解:根据关于原点对称的点的坐标的特点,
    ∴点A(-2,3)关于原点对称的点的坐标是(2,-3), 故选D.
    【点睛】
    本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征.
    4、A
    【解析】
    试题分析:根据平均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答.
    平均数为:×(6+3+4+1+7)=1,
    按照从小到大的顺序排列为:3,4,1,6,7,所以,中位数为:1.
    故选A.
    考点:中位数;算术平均数.
    5、C
    【解析】
    先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论.
    【详解】
    解:∵∠1=180°﹣100°=80°,a∥c,
    ∴∠α=180°﹣80°﹣60°=40°.
    故选:C.

    【点睛】
    本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.
    6、C
    【解析】
    延长BC 到E 使BE=AD,利用中点的性质得到CM= DE=AB,再利用勾股定理进行计算即可解答.
    【详解】
    解:延长BC 到E 使BE=AD,∵BC//AD,∴四边形ACED是平行四边形,∴DE=AB,
    ∵BC=3,AD=1,
    ∴C是BE的中点,
    ∵M是BD的中点,
    ∴CM= DE=AB,
    ∵AC⊥BC,
    ∴AB==,
    ∴CM= ,
    故选:C.

    【点睛】
    此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.
    7、B
    【解析】
    分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.
    详解:因为-的相反数为
    所以-的绝对值为.
    故选:B
    点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.
    8、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    2536000人=2.536×106人.
    故选C.
    【点睛】
    本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    9、A
    【解析】
    ∵AB的中垂线交BC于D,AC的中垂线交BC于E,
    ∴DA=DB,EA=EC,
    则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,
    故选A.
    10、C
    【解析】
    利用相似三角形的性质即可判断.
    【详解】
    设AD=x,AE=y,
    ∵DE∥BC,
    ∴△ADE∽△ABC,
    ∴,
    ∴,
    ∴x=9,y=12,
    故选:C.
    【点睛】
    考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.

    二、填空题(共7小题,每小题3分,满分21分)
    11、3(x-2)(x+2)
    【解析】
    先提取公因式3,再根据平方差公式进行分解即可求得答案.注意分解要彻底.
    【详解】
    原式=3(x2﹣4)=3(x-2)(x+2).
    故答案为3(x-2)(x+2).
    【点睛】
    本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.
    12、1.
    【解析】
    求出AD=AB,设AD=AB=5x,AE=3x,则5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出代入求出即可,
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AD=AB,
    ∵cosA=,BE=4,DE⊥AB,
    ∴设AD=AB=5x,AE=3x,
    则5x﹣3x=4,
    x=1,
    即AD=10,AE=6,
    在Rt△ADE中,由勾股定理得:
    在Rt△BDE中,
    故答案为:1.
    【点睛】
    本题考查了菱形的性质,勾股定理,解直角三角形的应用,关键是求出DE的长.
    13、x1=0,x2=1
    【解析】
    先移项,然后利用因式分解法求解.
    【详解】
    x2=1x
    x2-1x=0,
    x(x-1)=0,
    x=0或x-1=0,
    ∴x1=0,x2=1.
    故答案为:x1=0,x2=1
    【点睛】
    本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解
    14、
    【解析】
    ∵2(+)=+,∴2+2=+,∴=-2,
    故答案为.
    点睛:本题看成平面向量、一元一次方程等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.
    15、4
    【解析】
    已知弧长即已知围成的圆锥的底面半径的长是6πcm,这样就求出底面圆的半径.扇形的半径为5cm就是圆锥的母线长是5cm.就可以根据勾股定理求出圆锥的高.
    【详解】
    设底面圆的半径是r,则2πr=6π,
    ∴r=3cm,
    ∴圆锥的高==4cm.
    故答案为4.
    16、a(a+b)(a-b).
    【解析】
    分析:本题考查的是提公因式法和利用平方差公式分解因式.
    解析:原式= a(a+b)(a-b).
    故答案为a(a+b)(a-b).
    17、且
    【解析】
    分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>1且m≠1,求出m的取值范围即可.
    详解:∵一元二次方程mx2-2x+3=1有两个不相等的实数根,
    ∴△>1且m≠1,
    ∴4-12m>1且m≠1,
    ∴m<且m≠1,
    故答案为:m<且m≠1.
    点睛:本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)根的判别式△=b2-4ac.当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.

    三、解答题(共7小题,满分69分)
    18、(1)图见解析;(2)126°;(3)1.
    【解析】
    (1)利用被调查学生的人数=了解程度达到B等的学生数÷所占比例,即可得出被调查学生的人数,由了解程度达到C等占到的比例可求出了解程度达到C等的学生数,再利用了解程度达到A等的学生数=被调查学生的人数-了解程度达到B等的学生数-了解程度达到C等的学生数-了解程度达到D等的学生数可求出了解程度达到A等的学生数,依此数据即可将条形统计图补充完整;
    (2)根据A等对应的扇形圆心角的度数=了解程度达到A等的学生数÷被调查学生的人数×360°,即可求出结论;
    (3)利用该校现有学生数×了解程度达到A等的学生所占比例,即可得出结论.
    【详解】
    (1)48÷40%=120(人),
    120×15%=18(人),
    120-48-18-12=42(人).
    将条形统计图补充完整,如图所示.

    (2)42÷120×100%×360°=126°.
    答:扇形统计图中的A等对应的扇形圆心角为126°.
    (3)1500×=1(人).
    答:该校学生对政策内容了解程度达到A等的学生有1人.
    【点睛】
    本题考查了条形统计图、扇形统计图以及用样本估计总体,观察条形统计图及扇形统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.
    19、 (1) 圆的半径为4.5;(2) EF=.
    【解析】
    (1)连接OD,根据垂径定理得:DH=2,设圆O的半径为r,根据勾股定理列方程可得结论;
    (2)过O作OG⊥AE于G,证明△AGO∽△AHF,列比例式可得AF的长,从而得EF的长.
    【详解】
    (1)连接OD,
    ∵直径AB⊥弦CD,CD=4,
    ∴DH=CH=CD=2,
    在Rt△ODH中,AH=5,
    设圆O的半径为r,
    根据勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,
    解得:r=4.5,
    则圆的半径为4.5;
    (2)过O作OG⊥AE于G,
    ∴AG=AE=×6=3,
    ∵∠A=∠A,∠AGO=∠AHF,
    ∴△AGO∽△AHF,
    ∴,
    ∴,
    ∴AF=,
    ∴EF=AF﹣AE=﹣6=.

    【点睛】
    本题考查了垂径定理,勾股定理,相似三角形的判定与性质,解答本题的关键是正确添加辅助线并熟练掌握垂径定理和相似三角形的判定与性质.
    20、(1)120,30%;(2)作图见解析;(3)1.
    【解析】
    试题分析:(1)用安全意识分“一般”的人数除以安全意识分“一般”的人数所占的百分比即可得这次调查一共抽取的学生人数;用安全意识分“很强”的人数除以这次调查一共抽取的学生人数即可得安全意识“很强”的学生占被调查学生总数的百分比;(2)用这次调查一共抽取的学生人数乘以安全意识分“较强”的人数所占的百分比即可得安全意识分“较强”的人数,在条形统计图上画出即可;(3)用总人数乘以安全意识为“淡薄”、 “一般”的学生一共所占的百分比即可得全校需要强化安全教育的学生的人数.
    试题解析:(1) 12÷15%=120人;36÷120=30%;
    (2)120×45%=54人,补全统计图如下:

    (3)1800×=1人.
    考点:条形统计图;扇形统计图;用样本估计总体.
    21、(1)直线l与⊙O相切;(2)证明见解析;(3).
    【解析】
    试题分析:(1)连接OE、OB、OC.由题意可证明,于是得到∠BOE=∠COE,由等腰三角形三线合一的性质可证明OE⊥BC,于是可证明OE⊥l,故此可证明直线l与⊙O相切;
    (2)先由角平分线的定义可知∠ABF=∠CBF,然后再证明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依据等角对等边证明BE=EF即可;
    (3)先求得BE的长,然后证明△BED∽△AEB,由相似三角形的性质可求得AE的长,于是可得到AF的长.
    试题解析:(1)直线l与⊙O相切.理由如下:
    如图1所示:连接OE、OB、OC.

    ∵AE平分∠BAC,
    ∴∠BAE=∠CAE.
    ∴.
    ∴∠BOE=∠COE.
    又∵OB=OC,
    ∴OE⊥BC.
    ∵l∥BC,
    ∴OE⊥l.
    ∴直线l与⊙O相切.
    (2)∵BF平分∠ABC,
    ∴∠ABF=∠CBF.
    又∵∠CBE=∠CAE=∠BAE,
    ∴∠CBE+∠CBF=∠BAE+∠ABF.
    又∵∠EFB=∠BAE+∠ABF,
    ∴∠EBF=∠EFB.
    ∴BE=EF.
    (3)由(2)得BE=EF=DE+DF=1.
    ∵∠DBE=∠BAE,∠DEB=∠BEA,
    ∴△BED∽△AEB.
    ∴,即,解得;AE=,
    ∴AF=AE﹣EF=﹣1=.
    考点:圆的综合题.
    22、(2)(2)7或2.
    【解析】
    试题分析:(2)根据反比例函数k的几何意义得到|k|=2,可得到满足条件的k=6,于是得到反比例函数解析式为y=;
    (2)分类讨论:当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,再利用反比例函数图象上点的坐标特征确定M点坐标为(2,6),则AB=AM=6,所以t=2+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,根据正方形的性质得AB=BC=t-2,则C点坐标为(t,t-2),然后利用反比例函数图象上点的坐标特征得到t(t-2)=6,再解方程得到满足条件的t的值.
    试题解析:(2)∵△AOM的面积为2,
    ∴|k|=2,
    而k>0,
    ∴k=6,
    ∴反比例函数解析式为y=;
    (2)当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,
    把x=2代入y=得y=6,
    ∴M点坐标为(2,6),
    ∴AB=AM=6,
    ∴t=2+6=7;
    当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,
    则AB=BC=t-2,
    ∴C点坐标为(t,t-2),
    ∴t(t-2)=6,
    整理为t2-t-6=0,解得t2=2,t2=-2(舍去),
    ∴t=2,
    ∴以AB为一边的正方形有一个顶点在反比例函数y=的图象上时,t的值为7或2.
    考点:反比例函数综合题.
    23、(1)证明见解析(2)
    【解析】
    分析:
    (1)由已知条件易得BE=DF且BE∥DF,从而可得四边BFDE是平行四边形,结合∠EDB=90°即可得到四边形BFDE是矩形;
    (2)由已知易得AB=5,由AF平分∠DAB,DC∥AB可得∠DAF=∠BAF=∠DFA,由此可得DF=AD=5,结合BE=DF可得BE=5,由此可得AB=8,结合BF=DE=4即可求得tan∠BAF=.
    详解:
    (1)∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD,
    ∵AE=CF,
    ∴BE=DF,
    ∴四边形BFDE是平行四边形.
    ∵DE⊥AB,
    ∴∠DEB=90°,
    ∴四边形BFDE是矩形;
    (2)在Rt△BCF中,由勾股定理,得
    AD =,
    ∵四边形ABCD是平行四边形,
    ∴AB∥DC,
    ∴∠DFA=∠FAB.
    ∵AF平分∠DAB
    ∴∠DAF=∠FAB,
    ∴∠DAF=∠DFA,
    ∴DF=AD=5,
    ∵四边形BFDE是矩形,
    ∴BE=DF=5,BF=DE=4,∠ABF=90°,
    ∴AB=AE+BE=8,
    ∴tan∠BAF=.
    点睛:(1)熟悉平行四边形的性质和矩形的判定方法是解答第1小题的关键;(2)能由AF平分∠DAB,DC∥AB得到∠DAF=∠BAF=∠DFA,进而推得DF=AD=5是解答第2小题的关键.
    24、(1)见解析;(2).
    【解析】
    (1)根据折叠得出∠DEF=∠BEF,根据矩形的性质得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;
    (2)过E作EM⊥BC于M,则四边形ABME是矩形,根据矩形的性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.
    【详解】
    (1)∵现将纸片折叠,使点D与点B重合,折痕为EF,∴∠DEF=∠BEF.
    ∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;
    (2)过E作EM⊥BC于M,则四边形ABME是矩形,所以EM=AB=6,AE=BM.
    ∵现将纸片折叠,使点D与点B重合,折痕为EF,∴DE=BE,DO=BO,BD⊥EF.
    ∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.
    在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.
    在Rt△EMF中,由勾股定理得:EF==.
    故答案为.

    【点睛】
    本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键.

    相关试卷

    2022年山东省莘县联考中考数学模拟预测试卷含解析:

    这是一份2022年山东省莘县联考中考数学模拟预测试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,一元二次方程的根是等内容,欢迎下载使用。

    2021-2022学年河南省信阳固始县联考中考数学五模试卷含解析:

    这是一份2021-2022学年河南省信阳固始县联考中考数学五模试卷含解析,共21页。

    河南省驻马店泌阳县联考2022年中考数学模拟预测试卷含解析:

    这是一份河南省驻马店泌阳县联考2022年中考数学模拟预测试卷含解析,共21页。试卷主要包含了已知抛物线y=ax2﹣等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map