河南省开封市尉氏县重点达标名校2021-2022学年中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于点E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为( )DC=3OG;(2)OG= BC;(3)△OGE是等边三角形;(4).
A.1 B.2 C.3 D.4
2.在0.3,﹣3,0,﹣这四个数中,最大的是( )
A.0.3 B.﹣3 C.0 D.﹣
3.已知xa=2,xb=3,则x3a﹣2b等于( )
A. B.﹣1 C.17 D.72
4.小手盖住的点的坐标可能为( )
A. B. C. D.
5.如图的几何体中,主视图是中心对称图形的是( )
A. B. C. D.
6.某运动会颁奖台如图所示,它的主视图是( )
A. B. C. D.
7.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:
册数 | 0 | 1 | 2 | 3 | 4 |
人数 | 4 | 12 | 16 | 17 | 1 |
关于这组数据,下列说法正确的是( )
A.中位数是2 B.众数是17 C.平均数是2 D.方差是2
8.若代数式有意义,则实数x的取值范围是( )
A.x>0 B.x≥0 C.x≠0 D.任意实数
9.在平面直角坐标系中,位于第二象限的点是( )
A.(﹣1,0) B.(﹣2,﹣3) C.(2,﹣1) D.(﹣3,1)
10.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于( )
A.6 B.6 C.3 D.9
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知一组数据:3,3,4,5,5,则它的方差为____________
12.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.
13.若正六边形的边长为2,则此正六边形的边心距为______.
14.如果把抛物线y=2x2﹣1向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是_____.
15.若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是_____三角形.
16.某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回 元(用含a的代数式表示).
三、解答题(共8题,共72分)
17.(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
本数(本) | 频数(人数) | 频率 |
5 | 0.2 | |
6 | 18 | 0.36 |
7 | 14 | |
8 | 8 | 0.16 |
合计 | 1 |
(1)统计表中的________,________,________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.
18.(8分)平面直角坐标系中(如图),已知抛物线经过点和,与y轴相交于点C,顶点为P.
(1)求这条抛物线的表达式和顶点P的坐标;
(2)点E在抛物线的对称轴上,且,求点E的坐标;
(3)在(2)的条件下,记抛物线的对称轴为直线MN,点Q在直线MN右侧的抛物线上,,求点Q的坐标.
19.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,过点D作∠ABD=∠ADE,交AC于点E.
(1)求证:DE为⊙O的切线.
(2)若⊙O的半径为,AD=,求CE的长.
20.(8分)如图,AC⊥BD,DE交AC于E,AB=DE,∠A=∠D.求证:AC=AE+BC.
21.(8分)某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:
x(万元) | 1 | 2 | 2.5 | 3 | 5 |
yA(万元) | 0.4 | 0.8 | 1 | 1.2 | 2 |
信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.
(1)求出yB与x的函数关系式;
(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;
(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?
22.(10分)如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.
(1)请直接写出⊙M的直径,并求证BD平分∠ABO;
(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.
23.(12分)计算: +()﹣2﹣|1﹣|﹣(π+1)0.
24.解不等式组,并将它的解集在数轴上表示出来.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
∵EF⊥AC,点G是AE中点,
∴OG=AG=GE=AE,
∵∠AOG=30°,
∴∠OAG=∠AOG=30°,
∠GOE=90°-∠AOG=90°-30°=60°,
∴△OGE是等边三角形,故(3)正确;
设AE=2a,则OE=OG=a,
由勾股定理得,AO=,
∵O为AC中点,
∴AC=2AO=2,
∴BC=AC=,
在Rt△ABC中,由勾股定理得,AB==3a,
∵四边形ABCD是矩形,
∴CD=AB=3a,
∴DC=3OG,故(1)正确;
∵OG=a,BC=,
∴OG≠BC,故(2)错误;
∵S△AOE=a•=,
SABCD=3a•=32,
∴S△AOE=SABCD,故(4)正确;
综上所述,结论正确是(1)(3)(4)共3个,
故选C.
【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.
2、A
【解析】
根据正数大于0,0大于负数,正数大于负数,比较即可
【详解】
∵-3<-<0<0.3
∴最大为0.3
故选A.
【点睛】
本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型.
3、A
【解析】
∵xa=2,xb=3,
∴x3a−2b=(xa)3÷(xb)2=8÷9= ,
故选A.
4、B
【解析】
根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.
【详解】
根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;
分析选项可得只有B符合.
故选:B.
【点睛】
此题考查点的坐标,解题的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
5、C
【解析】
解:球是主视图是圆,圆是中心对称图形,故选C.
6、C
【解析】
从正面看到的图形如图所示:
,
故选C.
7、A
【解析】
试题解析:察表格,可知这组样本数据的平均数为:
(0×4+1×12+2×16+3×17+4×1)÷50=;
∵这组样本数据中,3出现了17次,出现的次数最多,
∴这组数据的众数是3;
∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,
∴这组数据的中位数为2,
故选A.
考点:1.方差;2.加权平均数;3.中位数;4.众数.
8、C
【解析】
根据分式和二次根式有意义的条件进行解答.
【详解】
解:依题意得:x2≥1且x≠1.
解得x≠1.
故选C.
【点睛】
考查了分式有意义的条件和二次根式有意义的条件.解题时,注意分母不等于零且被开方数是非负数.
9、D
【解析】
点在第二象限的条件是:横坐标是负数,纵坐标是正数,直接得出答案即可.
【详解】
根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有C(﹣3,1)符合,故选:D.
【点睛】
本题考查点的坐标的性质,解题的关键是掌握点的坐标的性质.
10、B
【解析】
连接DF,根据垂径定理得到 , 得到∠DCF=∠EOD=30°,根据圆周角定理、余弦的定义计算即可.
【详解】
解:连接DF,
∵直径CD过弦EF的中点G,
∴,
∴∠DCF=∠EOD=30°,
∵CD是⊙O的直径,
∴∠CFD=90°,
∴CF=CD•cos∠DCF=12× = ,
故选B.
【点睛】
本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
根据题意先求出这组数据的平均数是:(3+3+4+5+5)÷5=4,再根据方差公式求出这组数据的方差为:×[(3–4)2+(3–4)2+(4–4)2+(5–4)2+(5–4)2]=.
故答案为.
12、20000
【解析】
试题分析:1000÷=20000(条).
考点:用样本估计总体.
13、.
【解析】
连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.
【详解】
连接OA、OB、OC、OD、OE、OF,
∵正六边形ABCDEF,
∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,
∴△AOB是等边三角形,
∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,
在△OAM中,由勾股定理得:OM=.
14、y=2(x+1)2+1.
【解析】
原抛物线的顶点为(0,-1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(-1,1);
可设新抛物线的解析式为y=2(x-h)2+k,代入得:y=2(x+1)2+1.
15、直角三角形.
【解析】
根据题意,画出图形,用垂直平分线的性质解答.
【详解】
点O落在AB边上,
连接CO,
∵OD是AC的垂直平分线,
∴OC=OA,
同理OC=OB,
∴OA=OB=OC,
∴A、B、C都落在以O为圆心,以AB为直径的圆周上,
∴∠C是直角.
∴这个三角形是直角三角形.
【点睛】
本题考查线段垂直平分线的性质,解题关键是准确画出图形,进行推理证明.
16、(50-3a).
【解析】
试题解析:∵购买这种售价是每千克a元的水果3千克需3a元,
∴根据题意,应找回(50-3a)元.
考点:列代数式.
三、解答题(共8题,共72分)
17、(1)10,0.28,50(2)图形见解析(3)6.4(4)528
【解析】
分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;
(2)根据a的值画出条形图即可;
(3)根据平均数的定义计算即可;
(4)用样本估计总体的思想解决问题即可;
详解:(1)由题意c==50,
a=50×0.2=10,b==0.28,c=50;
故答案为10,0.28,50;
(2)将频数分布表直方图补充完整,如图所示:
(3)所有被调查学生课外阅读的平均本数为:
(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).
(4)该校七年级学生课外阅读7本及以上的人数为:
(0.28+0.16)×1200=528(人).
点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.
18、(1),顶点P的坐标为;(2)E点坐标为;(3)Q点的坐标为.
【解析】
(1)利用交点式写出抛物线解析式,把一般式配成顶点式得到顶点P的坐标;
(2)设,根据两点间的距离公式,利用得到,然后解方程求出t即可得到E点坐标;
(3)直线交轴于,作于,如图,利用得到,设,则,再在中利用正切的定义得到,即,然后解方程求出m即可得到Q点坐标.
【详解】
解:(1)抛物线解析式为,
即,
,
顶点P的坐标为;
(2)抛物线的对称轴为直线,
设,
,
,解得,
E点坐标为;
(3)直线交x轴于F,作MN⊥直线x=2于H,如图,
,
而,
,
设,则,
在中,,
,
整理得,解得(舍去),,
Q点的坐标为.
【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和锐角三角函数的定义;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.
19、 (1)证明见解析;(2)CE=1.
【解析】
(1)求出∠ADO+∠ADE=90°,推DE⊥OD,根据切线的判定推出即可;
(2)求出CD,AC的长,证△CDE∽△CAD,得出比例式,求出结果即可.
【详解】
(1)连接OD,
∵AB是直径,
∴∠ADB=90°,
∴∠ADO+∠BDO=90°,
∵OB=OD,
∴∠BDO=∠ABD,
∵∠ABD=∠ADE,
∴∠ADO+∠ADE=90°,
即,OD⊥DE,
∵OD为半径,
∴DE为⊙O的切线;
(2)∵⊙O的半径为,
∴AB=2OA==AC,
∵∠ADB=90°,
∴∠ADC=90°,
在Rt△ADC中,由勾股定理得:DC===5,
∵∠ODE=∠ADC=90°,∠ODB=∠ABD=∠ADE,
∴∠EDC=∠ADO,
∵OA=OD,
∴∠ADO=∠OAD,
∵AB=AC,AD⊥BC,
∴∠OAD=∠CAD,
∴∠EDC=∠CAD,
∵∠C=∠C,
∴△CDE∽△CAD,
∴=,
∴=,
解得:CE=1.
【点睛】
本题考查了等腰三角形的性质与切线的判定,解题的关键是熟练的掌握等腰三角形的性质与切线的判定.
20、见解析.
【解析】
由“SAS”可证△ABC≌△DEC,可得BC=CE,即可得结论.
【详解】
证明:∵AB=DE,∠A=∠D,∠ACB=∠DCE=90°
∴△ABC≌△DEC(SAS)
∴BC=CE,
∵AC=AE+CE
∴AC=AE+BC
【点睛】
本题考查了全等三角形的判定和性质,熟练运用全等三角形的性质是本题的关键.
21、 (1)yB=-0.2x2+1.6x(2)一次函数,yA=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元
【解析】
(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx求解即可;
(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;
(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值
【详解】
解:(1)yB=-0.2x2+1.6x,
(2)一次函数,yA=0.4x,
(3)设投资B产品x万元,投资A产品(15-x)万元,投资两种产品共获利W万元, 则W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,
∴当x=3时,W最大值=7.8,
答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元.
22、(1)详见解析;(2)(,1).
【解析】
(1)根据勾股定理可得AB的长,即⊙M的直径,根据同弧所对的圆周角可得BD平分∠ABO;
(2)作辅助构建切线AE,根据特殊的三角函数值可得∠OAB=30°,分别计算EF和AF的长,可得点E的坐标.
【详解】
(1)∵点A(,0)与点B(0,﹣1),
∴OA=,OB=1,
∴AB==2,
∵AB是⊙M的直径,
∴⊙M的直径为2,
∵∠COD=∠CBO,∠COD=∠CBA,
∴∠CBO=∠CBA,
即BD平分∠ABO;
(2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,
∵在Rt△ACB中,tan∠OAB=,
∴∠OAB=30°,
∵∠ABO=90°,
∴∠OBA=60°,
∴∠ABC=∠OBC==30°,
∴OC=OB•tan30°=1×,
∴AC=OA﹣OC=,
∴∠ACE=∠ABC+∠OAB=60°,
∴∠EAC=60°,
∴△ACE是等边三角形,
∴AE=AC=,
∴AF=AE=,EF==1,
∴OF=OA﹣AF=,
∴点E的坐标为(,1).
【点睛】
此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.
23、
【解析】
先算负整数指数幂、零指数幂、二次根式的化简、绝对值,再相加即可求解;
【详解】
解:原式
【点睛】
考查实数的混合运算,分别掌握负整数指数幂、零指数幂、二次根式的化简、绝对值的计算法则是解题的关键.
24、x≤1,解集表示在数轴上见解析
【解析】
首先根据不等式的解法求解不等式,然后在数轴上表示出解集.
【详解】
去分母,得:3x﹣2(x﹣1)≤3,
去括号,得:3x﹣2x+2≤3,
移项,得:3x﹣2x≤3﹣2,
合并同类项,得:x≤1,
将解集表示在数轴上如下:
【点睛】
本题考查了解一元一次不等式,解题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.
河南省开封市尉氏县重点达标名校2022-2023学年中考数学猜题卷含解析: 这是一份河南省开封市尉氏县重点达标名校2022-2023学年中考数学猜题卷含解析,共17页。
甘肃省镇原县重点达标名校2021-2022学年中考数学模拟试题含解析: 这是一份甘肃省镇原县重点达标名校2021-2022学年中考数学模拟试题含解析,共25页。试卷主要包含了考生要认真填写考场号和座位序号,下列算式的运算结果正确的是等内容,欢迎下载使用。
2021-2022学年新疆乌鲁木齐天山区重点达标名校中考数学模拟试题含解析: 这是一份2021-2022学年新疆乌鲁木齐天山区重点达标名校中考数学模拟试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,计算﹣8+3的结果是,如图,下列图案是轴对称图形的是,下列计算正确的是,下列各式中,互为相反数的是等内容,欢迎下载使用。