河南省鹤壁市、淇县重点达标名校2021-2022学年中考五模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是( )
A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°
2.已知在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是( )
A.若AB=CD,则四边形ABCD一定是等腰梯形;
B.若∠DBC=∠ACB,则四边形ABCD一定是等腰梯形;
C.若,则四边形ABCD一定是矩形;
D.若AC⊥BD且AO=OD,则四边形ABCD一定是正方形.
3.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )
A.垂线段最短 B.经过一点有无数条直线
C.两点之间,线段最短 D.经过两点,有且仅有一条直线
4.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )
①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h; ⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时
A.2个 B.3个 C.4个 D.5个
5.在数轴上到原点距离等于3的数是( )
A.3 B.﹣3 C.3或﹣3 D.不知道
6.下列各式计算正确的是( )
A. B. C. D.
7.如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是( )
A.3cm B.4cm C.5cm D.6cm
8.如图,在Rt△ABC中,∠B=90º,AB=6,BC=8,点D在BC上,以AC为对角线的所有□ADCE中,DE的最小值是( )
A.4 B.6 C.8 D.10
9.对于非零的两个实数、,规定,若,则的值为( )
A. B. C. D.
10.如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=( )
A. B.1 C. D.
11.现有三张背面完全相同的卡片,正面分别标有数字﹣1,﹣2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是( )
A. B. C. D.
12.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣图象上的点,并且y1<0<y2<y3,则下列各式中正确的是( )
A.x1<x2<x3 B.x1<x3<x2 C.x2<x1<x3 D.x2<x3<x1
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为______.
14.含角30°的直角三角板与直线,的位置关系如图所示,已知,∠1=60°,以下三个结论中正确的是____(只填序号).
①AC=2BC ②△BCD为正三角形 ③AD=BD
15.如图,在四边形ABCD中,AD∥BC,AB=CD且AB与CD不平行,AD=2,∠BCD=60°,对角线CA平分∠BCD,E,F分别是底边AD,BC的中点,连接EF,点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为__.
16.如图,Rt△ABC中,∠ABC=90°,AB=BC,直线l1、l2、l1分别通过A、B、C三点,且l1∥l2∥l1.若l1与l2的距离为5,l2与l1的距离为7,则Rt△ABC的面积为___________
17.在数学课上,老师提出如下问题:尺规作图:确定图1中所在圆的圆心.
已知:.
求作:所在圆的圆心.
曈曈的作法如下:如图2,
(1)在上任意取一点,分别连接,;
(2)分别作弦,的垂直平分线,两条垂直平分线交于点.点就是所在圆的圆心.
老师说:“曈曈的作法正确.”
请你回答:曈曈的作图依据是_____.
18.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标(6,0),B的坐标(0,8),点C的坐标(﹣2,4),点M,N分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个单位长度的速度沿O→A→B路线向终点B匀速运动,动点N从O点开始,以每秒2个单位长度的速度沿O→C→B→A路线向终点A匀速运动,点M,N同时从O点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间为t秒(t>0),△OMN的面积为S.则:AB的长是_____,BC的长是_____,当t=3时,S的值是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).
20.(6分)如图1,在直角梯形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,过点C作CE⊥BP交直线BP于E.
(1) 若,求证:;
(2) 若AB=BC.
① 如图2,当点P与E重合时,求的值;
② 如图3,设∠DAP的平分线AF交直线BP于F,当CE=1,时,直接写出线段AF的长.
21.(6分)先化简,再求值:(﹣1)÷,其中x=1.
22.(8分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.
请你根据以上数据,计算舍利塔的高度AB.
23.(8分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)
(1)写出D级学生的人数占全班总人数的百分比为 ,C级学生所在的扇形圆心角的度数为 ;
(2)该班学生体育测试成绩的中位数落在等级 内;
(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?
24.(10分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)
25.(10分)如图,在△ABC中,BC=12,tanA=,∠B=30°;求AC和AB的长.
26.(12分)先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=1.
27.(12分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.
【详解】
A.∵∠3=∠A,
本选项不能判断AB∥CD,故A错误;
B.∵∠D=∠DCE,
∴AC∥BD.
本选项不能判断AB∥CD,故B错误;
C.∵∠1=∠2,
∴AB∥CD.
本选项能判断AB∥CD,故C正确;
D.∵∠D+∠ACD=180°,
∴AC∥BD.
故本选项不能判断AB∥CD,故D错误.
故选:C.
【点睛】
考查平行线的判定,掌握平行线的判定定理是解题的关键.
2、C
【解析】
A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;
B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;
C、因为由结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;
D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立.
故选C.
3、C
【解析】
用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,
∴线段AB的长小于点A绕点C到B的长度,
∴能正确解释这一现象的数学知识是两点之间,线段最短,
故选C.
【点睛】
根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.
4、B
【解析】
根据图形给出的信息求出两车的出发时间,速度等即可解答.
【详解】
解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.
②慢车0时出发,快车2时出发,故正确.
③快车4个小时走了276km,可求出速度为69km/h,错误.
④慢车6个小时走了276km,可求出速度为46km/h,正确.
⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.
⑥快车2时出发,14时到达,用了12小时,错误.
故答案选B.
【点睛】
本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.
5、C
【解析】
根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.
【详解】
绝对值为3的数有3,-3.故答案为C.
【点睛】
本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.
6、C
【解析】
解:A.2a与2不是同类项,不能合并,故本选项错误;
B.应为,故本选项错误;
C.,正确;
D.应为,故本选项错误.
故选C.
【点睛】
本题考查幂的乘方与积的乘方;同底数幂的乘法.
7、A
【解析】
分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.
详解:设CN=xcm,则DN=(8﹣x)cm,
由折叠的性质知EN=DN=(8﹣x)cm,
而EC=BC=4cm,
在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,
即(8﹣x)2=16+x2,
整理得16x=48,
所以x=1.
故选:A.
点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.
8、B
【解析】
平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.
【详解】
平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小。
∵OD⊥BC,BC⊥AB,
∴OD∥AB,
又∵OC=OA,
∴OD是△ABC的中位线,
∴OD=AB=3,
∴DE=2OD=6.
故选:B.
【点睛】
本题考查了平行四边形的性质,解题的关键是利用三角形中位线定理进行求解.
9、D
【解析】
试题分析:因为规定,所以,所以x=,经检验x=是分式方程的解,故选D.
考点:1.新运算;2.分式方程.
10、D
【解析】
由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出△ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到∠BAC=30°,求得AC⊥BE,推出C在对角线AH上,得到A,C,H共线,于是得到结论.
【详解】
如图,连接AC交BE于点O,
∵将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,
∴AB=BE,
∵四边形AEHB为菱形,
∴AE=AB,
∴AB=AE=BE,
∴△ABE是等边三角形,
∵AB=3,AD=,
∴tan∠CAB=,
∴∠BAC=30°,
∴AC⊥BE,
∴C在对角线AH上,
∴A,C,H共线,
∴AO=OH=AB=,
∵OC=BC=,
∵∠COB=∠OBG=∠G=90°,
∴四边形OBGM是矩形,
∴OM=BG=BC=,
∴HM=OH﹣OM=,
故选D.
【点睛】
本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.
11、D
【解析】
先找出全部两张卡片正面数字之和情况的总数,再先找出全部两张卡片正面数字之和为正数情况的总数,两者的比值即为所求概率.
【详解】
任取两张卡片,数字之和一共有﹣3、2、1三种情况,其中和为正数的有2、1两种情况,所以这两张卡片正面数字之和为正数的概率是.故选D.
【点睛】
本题主要考查概率的求法,熟练掌握概率的求法是解题的关键.
12、D
【解析】
先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y1<0<y2<y3判断出三点所在的象限,故可得出结论.
【详解】
解:∵反比例函数y=﹣中k=﹣1<0,
∴此函数的图象在二、四象限,且在每一象限内y随x的增大而增大,
∵y1<0<y2<y3,
∴点(x1,y1)在第四象限,(x2,y2)、(x3,y3)两点均在第二象限,
∴x2<x3<x1.
故选:D.
【点睛】
本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1.5或3
【解析】
根据矩形的性质,利用勾股定理求得AC==5,由题意,可分△EFC是直角三角形的两种情况:
如图1,当∠EFC=90°时,由∠AFE=∠B=90°,∠EFC=90°,可知点F在对角线AC上,且AE是∠BAC的平分线,所以可得BE=EF,然后再根据相似三角形的判定与性质,可知△ABC∽△EFC,即,代入数据可得,解得BE=1.5;
如图2,当∠FEC=90°,可知四边形ABEF是正方形,从而求出BE=AB=3.
故答案为1.5或3.
点睛:此题主要考查了翻折变换的性质,勾股定理,矩形的性质,正方形的判定与性质,利用勾股定理列方程求解是常用的方法,本题难点在于分类讨论,做出图形更形象直观.
14、②③
【解析】
根据平行线的性质以及等边三角形的性质即可求出答案.
【详解】
由题意可知:∠A=30°,∴AB=2BC,故①错误;
∵l1∥l2,∴∠CDB=∠1=60°.
∵∠CBD=60°,∴△BCD是等边三角形,故②正确;
∵△BCD是等边三角形,∴∠BCD=60°,∴∠ACD=∠A=30°,∴AD=CD=BD,故③正确.
故答案为②③.
【点睛】
本题考查了平行的性质以及等边三角形的性质,解题的关键是熟练运用平行线的性质,等边三角形的性质,含30度角的直角三角形的性质,本题属于中等题型.
15、2
【解析】
将PA+PB转化为PA+PC的值即可求出最小值.
【详解】
解:
E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,
B点关于EF的对称点C点,
AC即为PA+PB的最小值,
∠BCD=, 对角线AC平分∠BCD,
∠ABC=, ZBCA=,
∠BAC=,
AD=2,
PA+PB的最小值=.
故答案为: .
【点睛】
求PA+PB的最小值, PA+PB不能直接求, 可考虑转化PA+PC的值,从而找出其最小值求解.
16、17
【解析】
过点B作EF⊥l2,交l1于E,交l1于F,如 图,
∵EF⊥l2,l1∥l2∥l1,
∴EF⊥l1⊥l1,
∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,
又∵∠ABC=90°,
∴∠ABE+∠FBC=90°,
∴∠EAB=∠FBC,
在△ABE和△BCF中,
,
∴△ABE≌△BCF,
∴BE=CF=5,AE=BF=7,
在Rt△ABE中,AB2=BE2+AE2,
∴AB2=74,
∴S△ABC=AB⋅BC=AB2=17.
故答案是17.
点睛:本题考查了全等三角形的判定和性质、勾股定理、平行线间的距离,三角形的面积公式,解题的关键是做辅助线,构造全等三角形,通过证明三角形全等对应边相等,再利用三角形的面积公式即可得解.
17、①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆)
【解析】
(1)在上任意取一点,分别连接,;
(2)分别作弦,的垂直平分线,两条垂直平分线交于点.点就是所在圆的圆心.
【详解】
解:根据线段的垂直平分线的性质定理可知:,
所以点是所在圆的圆心(理由①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆):)
故答案为①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆)
【点睛】
本题考查作图﹣复杂作图、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
18、10, 1, 1
【解析】
作CD⊥x轴于D,CE⊥OB于E,由勾股定理得出AB=10,OC==1,求出BE=OB﹣OE=4,得出OE=BE,由线段垂直平分线的性质得出BC=OC=1;当t=3时,N到达C点,M到达OA的中点,OM=3,ON=OC=1,由三角形面积公式即可得出△OMN的面积.
【详解】
解:作CD⊥x轴于D,CE⊥OB于E,如图所示:
由题意得:OA=1,OB=8,
∵∠AOB=90°,
∴AB==10;
∵点C的坐标(﹣2,4),
∴OC==1,OE=4,
∴BE=OB﹣OE=4,
∴OE=BE,
∴BC=OC=1;当t=3时,N到达C点,M到达OA的中点,OM=3,ON=OC=1,
∴△OMN的面积S=×3×4=1;
故答案为:10,1,1.
【点睛】
本题考查了勾股定理、坐标与图形性质、线段垂直平分线的性质、三角形面积公式等知识;熟练掌握勾股定理是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、
【解析】
过点C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD==x,根据AD+BD=AB列方程求解可得.
【详解】
解:过点C作CD⊥AB于点D,
设CD=x,
∵∠CBD=45°,
∴BD=CD=x,
在Rt△ACD中,
∵,
∴AD====x,
由AD+BD=AB可得x+x=10,
解得:x=5﹣5,
答:飞机飞行的高度为(5﹣5)km.
20、(1)证明见解析;(2)①;②3.
【解析】
(1) 过点A作AF⊥BP于F,根据等腰三角形的性质得到BF=BP,易证Rt△ABF∽Rt△BCE,根据相似三角形的性质得到,即可证明BP=CE.
(2) ①延长BP、AD交于点F,过点A作AG⊥BP于G,证明△ABG≌△BCP,根据全等三角形的性质得BG=CP,设BG=1,则PG=PC=1,BC=AB=,在Rt△ABF中,由射影定理知,AB2=BG·BF=5,即可求出BF=5,PF=5-1-1=3,即可求出的值;
② 延长BF、AD交于点G,过点A作AH⊥BE于H,证明△ABH≌△BCE,根据全等三角形的性质得BG=CP,设BH=BP=CE=1,又,得到PG=,BG=,根据射影定理得到AB2=BH·BG ,即可求出AB= ,根据勾股定理得到
,根据等腰直角三角形的性质得到.
【详解】
解:(1) 过点A作AF⊥BP于F
∵AB=AP
∴BF=BP,
∵Rt△ABF∽Rt△BCE
∴
∴BP=CE.
(2) ①延长BP、AD交于点F,过点A作AG⊥BP于G
∵AB=BC
∴△ABG≌△BCP(AAS)
∴BG=CP
设BG=1,则PG=PC=1
∴BC=AB=
在Rt△ABF中,由射影定理知,AB2=BG·BF=5
∴BF=5,PF=5-1-1=3
∴
② 延长BF、AD交于点G,过点A作AH⊥BE于H
∵AB=BC
∴△ABH≌△BCE(AAS)
设BH=BP=CE=1
∵
∴PG=,BG=
∵AB2=BH·BG
∴AB=
∴
∵AF平分∠PAD,AH平分∠BAP
∴∠FAH=∠BAD=45°
∴△AFH为等腰直角三角形
∴
【点睛】
考查等腰三角形的性质,勾股定理,射影定理,平行线分线段成比例定理等,解题的关键是作出辅助线.难度较大.
21、-1.
【解析】
先化简题目中的式子,再将x的值代入化简后的式子即可解答本题.
【详解】
解:原式=,
=,
=,
=﹣,
当x=1时,
原式=﹣=﹣1.
【点睛】
本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则
22、55米
【解析】
由题意可知△EDC∽△EBA,△FHC∽△FBA,根据相似三角形的性质可得,又DC=HG,可得,代入数据即可求得AC=106米,再由即可求得AB=55米.
【详解】
∵△EDC∽△EBA,△FHC∽△FBA,
,
,
,
即,
∴AC=106米,
又 ,
∴,
∴AB=55米.
答:舍利塔的高度AB为55米.
【点睛】
本题考查相似三角形的判定和性质的应用,解题的关键是灵活运用所学知识解决问题,利用相似三角形的性质建立方程解决问题.
23、(1)4%;(2)72°;(3)380人
【解析】
(1)根据A级人数及百分数计算九年级(1)班学生人数,用总人数减A、B、D级人数,得C级人数,再用C级人数÷总人数×360°,得C等级所在的扇形圆心角的度数;
(2)将人数按级排列,可得该班学生体育测试成绩的中位数;
(3)用(A级百分数+B级百分数)×1900,得这次考试中获得A级和B级的九年级学生共有的人数;
(4)根据各等级人数多少,设计合格的等级,使大多数人能合格.
【详解】
解:(1)九年级(1)班学生人数为13÷26%=50人,
C级人数为50-13-25-2=10人,
C等级所在的扇形圆心角的度数为10÷50×360°=72°,
故答案为72°;
(2)共50人,其中A级人数13人,B级人数25人,
故该班学生体育测试成绩的中位数落在B等级内,
故答案为B;
(3)估计这次考试中获得A级和B级的九年级学生共有(26%+25÷50)×1900=1444人;
(4)建议:把到达A级和B级的学生定为合格,(答案不唯一).
24、水坝原来的高度为12米
【解析】
试题分析:设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.
试题解析:设BC=x米,
在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,
在Rt△EBD中,
∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,
即2+x=4+,解得x=12,即BC=12,
答:水坝原来的高度为12米..
考点:解直角三角形的应用,坡度.
25、8+6.
【解析】
如图作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解决问题;
【详解】
解:如图作CH⊥AB于H.
在Rt△BCH中,∵BC=12,∠B=30°,
∴CH=BC=6,BH==6,
在Rt△ACH中,tanA==,
∴AH=8,
∴AC==10,
【点睛】
本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
26、 (x﹣y)2;2.
【解析】
首先利用多项式的乘法法则以及多项式与单项式的除法法则计算,然后合并同类项即可化简,然后代入数值计算即可.
【详解】
原式= x2﹣4y2+4xy(5y2-2xy)÷4xy
=x2﹣4y2+5y2﹣2xy
=x2﹣2xy+y2,
=(x﹣y)2,
当x=2028,y=2时,
原式=(2028﹣2)2=(﹣2)2=2.
【点睛】
本题考查的是整式的混合运算,正确利用多项式的乘法法则以及合并同类项法则是解题的关键.
27、1
【解析】解:
取时,原式.
2023年河南省鹤壁市淇县中考数学二模试卷(含解析): 这是一份2023年河南省鹤壁市淇县中考数学二模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年河南省鹤壁市淇县中考数学二模试卷(含解析): 这是一份2023年河南省鹤壁市淇县中考数学二模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
徽省临泉重点达标名校2021-2022学年中考五模数学试题含解析: 这是一份徽省临泉重点达标名校2021-2022学年中考五模数学试题含解析,共21页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。