河南省三门峡市重点达标名校2022年中考数学考前最后一卷含解析
展开
这是一份河南省三门峡市重点达标名校2022年中考数学考前最后一卷含解析,共23页。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.据统计,2018年全国春节运输人数约为3 000 000 000人,将3 000 000 000用科学记数法表示为( )
A.0.3×1010 B.3×109 C.30×108 D.300×107
2.安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是( )
A.3804.2×103 B.380.42×104 C.3.8042×106 D.3.8042×105
3.tan60°的值是( )
A. B. C. D.
4.如图,Rt△ABC中,∠C=90°,AC=4,BC=4,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为( )
A.2π B.4π C.6π D.8π
5.若代数式有意义,则实数x的取值范围是( )
A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠1
6.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数 (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )
A. B. C. D.12
7.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是
A. B.
C. D.
8.已知抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),其部分图象如图所示,下列结论:
①抛物线过原点;②a﹣b+c<1;③当x<1时,y随x增大而增大;
④抛物线的顶点坐标为(2,b);⑤若ax2+bx+c=b,则b2﹣4ac=1.
其中正确的是( )
A.①②③ B.①④⑤ C.①②④ D.③④⑤
9.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,,则四边形EFCD的周长为
A.14 B.13 C.12 D.10
10.如图,圆弧形拱桥的跨径米,拱高米,则拱桥的半径为( )米
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知线段AB=10cm,C为线段AB的黄金分割点(AC>BC),则BC=_____.
12.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.
13.如图,已知直线y=x+4与双曲线y=(x<0)相交于A、B两点,与x轴、y轴分别相交于D、C两点,若AB=2,则k=_____.
14.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是______.
15.学校乒乓球社团有4名男队员和3名女队员,要从这7名队员中随机抽取一男一女组成一队混合双打组合,可组成不同的组合共有_____对.
16.如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则 =______.
三、解答题(共8题,共72分)
17.(8分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)
18.(8分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)
19.(8分)如图,已知抛物线y=ax2+2x+8与x轴交于A,B两点,与y轴交于点C,且B(4,0).
(1)求抛物线的解析式及其顶点D的坐标;
(2)如果点P(p,0)是x轴上的一个动点,则当|PC﹣PD|取得最大值时,求p的值;
(3)能否在抛物线第一象限的图象上找到一点Q,使△QBC的面积最大,若能,请求出点Q的坐标;若不能,请说明理由.
20.(8分)如图,AB是⊙O的直径, ⊙O过BC的中点D,DE⊥AC.求证: △BDA∽△CED.
21.(8分)(1)计算:﹣22+|﹣4|+()-1+2tan60°
(2) 求 不 等 式 组的 解 集 .
22.(10分)如图,抛物线y=﹣x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.
(1)求点A,点B的坐标;
(2)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.
23.(12分)如图,直线y=﹣x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D.
(1)求抛物线y=x2+bx+c的解析式.
(2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.
①结合函数的图象,求x3的取值范围;
②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.
24.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).
求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.
【详解】
解:根据科学计数法的定义可得,3 000 000 000=3×109,故选择B.
【点睛】
本题考查了科学计数法的定义,确定n的值是易错点.
2、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
【详解】
∵3804.2千=3804200,
∴3804200=3.8042×106;
故选:C.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3、A
【解析】
根据特殊角三角函数值,可得答案.
【详解】
tan60°=
故选:A.
【点睛】
本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
4、B
【解析】
先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由∠A+∠B=90°可知阴影部分的面积等于一个圆的面积的.
【详解】
在△ABC中,依据勾股定理可知AB==8,
∵两等圆⊙A,⊙B外切,
∴两圆的半径均为4,
∵∠A+∠B=90°,
∴阴影部分的面积==4π.
故选:B.
【点睛】
本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键.
5、D
【解析】
试题分析:∵代数式有意义,
∴,
解得x≥0且x≠1.
故选D.
考点:二次根式,分式有意义的条件.
6、C
【解析】
设B点的坐标为(a,b),由BD=3AD,得D(,b),根据反比例函数定义求出关键点坐标,根据S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE= 9求出k.
【详解】
∵四边形OCBA是矩形,
∴AB=OC,OA=BC,
设B点的坐标为(a,b),
∵BD=3AD,
∴D(,b),
∵点D,E在反比例函数的图象上,
∴=k,
∴E(a, ),
∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-• -•-••(b-)=9,
∴k=,
故选:C
【点睛】
考核知识点:反比例函数系数k的几何意义. 结合图形,分析图形面积关系是关键.
7、C
【解析】
分三段讨论:
①两车从开始到相遇,这段时间两车距迅速减小;
②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;
③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;
结合图象可得C选项符合题意.故选C.
8、B
【解析】
由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;当x=﹣1时,y>1,得到a﹣b+c>1,结论②错误;根据抛物线的对称性得到结论③错误;将x=2代入二次函数解析式中结合4a+b+c=1,即可求出抛物线的顶点坐标,结论④正确;根据抛物线的顶点坐标为(2,b),判断⑤.
【详解】
解:①∵抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),
∴抛物线与x轴的另一交点坐标为(1,1),
∴抛物线过原点,结论①正确;
②∵当x=﹣1时,y>1,
∴a﹣b+c>1,结论②错误;
③当x<1时,y随x增大而减小,③错误;
④抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,且抛物线过原点,
∴c=1,
∴b=﹣4a,c=1,
∴4a+b+c=1,
当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,
∴抛物线的顶点坐标为(2,b),结论④正确;
⑤∵抛物线的顶点坐标为(2,b),
∴ax2+bx+c=b时,b2﹣4ac=1,⑤正确;
综上所述,正确的结论有:①④⑤.
故选B.
【点睛】
本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
9、C
【解析】
∵平行四边形ABCD,
∴AD∥BC,AD=BC,AO=CO,
∴∠EAO=∠FCO,
∵在△AEO和△CFO中,
,
∴△AEO≌△CFO,
∴AE=CF,EO=FO=1.5,
∵C四边形ABCD=18,∴CD+AD=9,
∴C四边形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.
故选C.
【点睛】
本题关键在于利用三角形全等,解题关键是将四边形CDEF的周长进行转化.
10、A
【解析】
试题分析:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O.连接OA.根据垂径定理和勾股定理求解.得AD=6设圆的半径是r, 根据勾股定理, 得r2=36+(r﹣4)2,解得r=6.5
考点:垂径定理的应用.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、(15-5).
【解析】
试题解析:∵C为线段AB的黄金分割点(AC>BC),
∴AC=AB=AC=×10=5-5,
∴BC=AB-AC=10-(5-5)=(15-5)cm.
考点:黄金分割.
12、
【解析】
试题解析:∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=3,
∴BD=2OB=6,
∴AD=.
【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
13、-3
【解析】
设A(a, a+4),B(c, c+4),则
解得: x+4=,即x2+4x−k=0,
∵直线y=x+4与双曲线y=相交于A、B两点,
∴a+c=−4,ac=-k,
∴(c−a)2=(c+a)2−4ac=16+4k,
∵AB=,
∴由勾股定理得:(c−a)2+[c+4−(a+4)]2=()2,
2 (c−a)2=8,
(c−a)2=4,
∴16+4k =4,
解得:k=−3,
故答案为−3.
点睛:本题考查了一次函数与反比例函数的交点问题、根与系数的关系、勾股定理、图象上点的坐标特征等,题目具有一定的代表性,综合性强,有一定难度.
14、
【解析】
如图,分别过点A,B作AE⊥,BF⊥,BD⊥,垂足分别为E,F,D.
∵△ABC为等腰直角三角形,∴AC=BC,∠ACB=90°,∴∠ACE+∠BCF=90°.∵AE⊥,BF⊥∴∠CAE+∠ACE=90°,∠CBF+∠BCF=90°,
∴∠CAE=∠BCF,∠ACE=∠CBF.
∵∠CAE=∠BCF,AC=BC,∠ACE=∠CBF,∴△ACE≌△CBF,∴CE=BF,AE=CF.设平行线间距离为d=l,则CE=BF=BD=1,AE=CF=2,AD=EF=CE+CF=3,
∴tanα=tan∠BAD==.
点睛:分别过点A,B作AE⊥,BF⊥,BD⊥,垂足分别为E,F,D,可根据ASA证明△ACE≌△CBF,设平行线间距离为d=1,进而求出AD、BD的值;本题考查了全等三角形的判定和锐角三角函数,解题的关键是合理添加辅助线构造全等三角形;
15、1
【解析】
利用树状图展示所有1种等可能的结果数.
【详解】
解:画树状图为:
共有1种等可能的结果数.
故答案为1.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
16、3﹣
【解析】
首先设点B的横坐标,由点B在抛物线y1=x2(x≥0)上,得出点B的坐标,再由平行,得出A和C的坐标,然后由CD平行于y轴,得出D的坐标,再由DE∥AC,得出E的坐标,即可得出DE和AB,进而得解.
【详解】
设点B的横坐标为,则
∵平行于x轴的直线AC
∴
又∵CD平行于y轴
∴
又∵DE∥AC
∴
∴
∴=3﹣
【点睛】
此题主要考查抛物线中的坐标求解,关键是利用平行的性质.
三、解答题(共8题,共72分)
17、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.
【解析】
(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.
(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.
(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.
【详解】
(1)证明:如图1中,连接BD.
∵点E,H分别为边AB,DA的中点,
∴EH∥BD,EH=BD,
∵点F,G分别为边BC,CD的中点,
∴FG∥BD,FG=BD,
∴EH∥FG,EH=GF,
∴中点四边形EFGH是平行四边形.
(2)四边形EFGH是菱形.
证明:如图2中,连接AC,BD.
∵∠APB=∠CPD,
∴∠APB+∠APD=∠CPD+∠APD,
即∠APC=∠BPD,
在△APC和△BPD中,
∵AP=PB,∠APC=∠BPD,PC=PD,
∴△APC≌△BPD,
∴AC=BD.
∵点E,F,G分别为边AB,BC,CD的中点,
∴EF=AC,FG=BD,
∵四边形EFGH是平行四边形,
∴四边形EFGH是菱形.
(3)四边形EFGH是正方形.
证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.
∵△APC≌△BPD,
∴∠ACP=∠BDP,
∵∠DMO=∠CMP,
∴∠COD=∠CPD=90°,
∵EH∥BD,AC∥HG,
∴∠EHG=∠ENO=∠BOC=∠DOC=90°,
∵四边形EFGH是菱形,
∴四边形EFGH是正方形.
考点:平行四边形的判定与性质;中点四边形.
18、电视塔高为米,点的铅直高度为(米).
【解析】
过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出OC=100,根据山坡坡度=1:2表示出PB=x, AB=2x, 在Rt△PCF中利用三角函数即可求解.
【详解】
过点P作PF⊥OC,垂足为F.
在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=100(米),
过点P作PB⊥OA,垂足为B.
由i=1:2,设PB=x,则AB=2x.
∴PF=OB=100+2x,CF=100﹣x.
在Rt△PCF中,由∠CPF=45°,
∴PF=CF,即100+2x=100﹣x,
∴x= ,即PB=米.
【点睛】
本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.
19、 (1) y=﹣(x﹣1)2+9 ,D(1,9); (2)p=﹣1;(3)存在点Q(2,1)使△QBC的面积最大.
【解析】
分析:
(1)把点B的坐标代入y=ax2+2x+1求得a的值,即可得到该抛物线的解析式,再把所得解析式配方化为顶点式,即可得到抛物线顶点D的坐标;
(2)由题意可知点P在直线CD上时,|PC﹣PD|取得最大值,因此,求得点C的坐标,再求出直CD的解析式,即可求得符合条件的点P的坐标,从而得到p的值;
(3)由(1)中所得抛物线的解析式设点Q的坐标为(m,﹣m2+2m+1)(0<m<4),然后用含m的代数式表达出△BCQ的面积,并将所得表达式配方化为顶点式即可求得对应点Q的坐标.
详解:
(1)∵抛物线y=ax2+2x+1经过点B(4,0),
∴16a+1+1=0,
∴a=﹣1,
∴抛物线的解析式为y=﹣x2+2x+1=﹣(x﹣1)2+9,
∴D(1,9);
(2)∵当x=0时,y=1,
∴C(0,1).
设直线CD的解析式为y=kx+b.
将点C、D的坐标代入得:,解得:k=1,b=1,
∴直线CD的解析式为y=x+1.
当y=0时,x+1=0,解得:x=﹣1,
∴直线CD与x轴的交点坐标为(﹣1,0).
∵当P在直线CD上时,|PC﹣PD|取得最大值,
∴p=﹣1;
(3)存在,
理由:如图,由(2)知,C(0,1),
∵B(4,0),
∴直线BC的解析式为y=﹣2x+1,
过点Q作QE∥y轴交BC于E,
设Q(m,﹣m2+2m+1)(0<m<4),则点E的坐标为:(m,﹣2m+1),
∴EQ=﹣m2+2m+1﹣(﹣2m+1)=﹣m2+4m,
∴S△QBC=(﹣m2+4m)×4=﹣2(m﹣2)2+1,
∴m=2时,S△QBC最大,此时点Q的坐标为:(2,1).
点睛:(1)解第2小题时,知道当点P在直线CD上时,|PC﹣PD|的值最大,是找到解题思路的关键;(2)解第3小题的关键是设出点Q的坐标(m,﹣m2+2m+1)(0<m<4),并结合点B、C的坐标把△BCQ的面积用含m的代数式表达出来.
20、证明见解析.
【解析】
不难看出△BDA和△CED都是直角三角形,证明△BDA∽△CED,只需要另外找一对角相等即可,由于AD是△ABC的中线,又可证AD⊥BC,即AD为BC边的中垂线,从而得到∠B=∠C,即可证相似.
【详解】
∵AB是⊙O直径,
∴AD⊥BC,
又BD=CD,
∴AB=AC,
∴∠B=∠C,
又∠ADB=∠DEC=90°,
∴△BDA∽△CED.
【点睛】
本题重点考查了圆周角定理、直径所对的圆周角为直角及相似三角形判定等知识的综合运用.
21、(1)1;(2)-1≤x
相关试卷
这是一份广东惠城区重点达标名校2021-2022学年中考数学考前最后一卷含解析,共17页。试卷主要包含了下列事件中,必然事件是,初三,下列运算正确的是等内容,欢迎下载使用。
这是一份2022年重庆市重点达标名校中考数学考前最后一卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,下列方程有实数根的是等内容,欢迎下载使用。
这是一份2022年重庆开州区重点达标名校中考数学考前最后一卷含解析,共28页。试卷主要包含了剪纸是我国传统的民间艺术等内容,欢迎下载使用。