黑龙江省大庆市第五十七中学2021-2022学年中考数学全真模拟试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,左、右并排的两棵树AB和CD,小树的高AB=6m,大树的高CD=9m,小明估计自己眼睛距地面EF=1.5m,当他站在F点时恰好看到大树顶端C点.已知此时他与小树的距离BF=2m,则两棵树之间的距离BD是( )
A.1m B.m C.3m D.m
2.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是( )
A. B. C. D.
3.已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是
A.x1=1,x2=-1 B.x1=1,x2=2
C.x1=1,x2=0 D.x1=1,x2=3
4.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
成绩
人数
这些运动员跳高成绩的中位数是( )
A. B. C. D.
5.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为( )
A. B. C. D.
6.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为( )
A.15πcm2 B.24πcm2 C.39πcm2 D.48πcm2
7.在平面直角坐标系中,有两条抛物线关于x轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=+6x+m,则m的值是 ( )
A.-4或-14 B.-4或14 C.4或-14 D.4或14
8.△ABC的三条边长分别是5,13,12,则其外接圆半径和内切圆半径分别是( )
A.13,5 B.6.5,3 C.5,2 D.6.5,2
9.如图所示,如果将一副三角板按如图方式叠放,那么 ∠1 等于( )
A. B. C. D.
10.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是( )
A.5 B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为_____.
12.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大、小和尚各有,人,则可以列方程组__________.
13.直线y=2x+1经过点(0,a),则a=________.
14.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.其中正确的结论有_____.(填序号)
15.如图所示,数轴上点A所表示的数为a,则a的值是____.
16.已知关于x的方程有两个不相等的实数根,则m的取值范围是______.
17.不等式组有2个整数解,则m的取值范围是_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.
19.(5分)如图,在正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边上的动点,且AE=BF=CG=DH.
(1)求证:△AEH≌△CGF;
(2)在点E、F、G、H运动过程中,判断直线EG是否经过某一个定点,如果是,请证明你的结论;如果不是,请说明理由
20.(8分)解方程(2x+1)2=3(2x+1)
21.(10分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=
(1)当8<t≤24时,求P关于t的函数解析式;
(2)设第t个月销售该原料药的月毛利润为w(单位:万元)
①求w关于t的函数解析式;
②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.
22.(10分)在一个不透明的布袋中装两个红球和一个白球,这些球除颜色外均相同
(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是 .
(2)甲、乙、丙三人依次从袋中摸出一个球,记录颜色后不放回,试求出乙摸到白球的概率
23.(12分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.求证:DE是⊙O的切线.求DE的长.
24.(14分)中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:
(1)本次调查了 名学生,扇形统计图中“1部”所在扇形的圆心角为 度,并补全条形统计图;
(2)此中学共有1600名学生,通过计算预估其中4部都读完了的学生人数;
(3)没有读过四大古典名著的两名学生准备从四大固定名著中各自随机选择一部来阅读,求他们选中同一名著的概率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
由∠AGE=∠CHE=90°,∠AEG=∠CEH可证明△AEG∽△CEH,根据相似三角形对应边成比例求出GH的长即BD的长即可.
【详解】
由题意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,
∵AG⊥EH,CH⊥EH,
∴∠AGE=∠CHE=90°,
∵∠AEG=∠CEH,
∴△AEG∽△CEH,
∴ == ,即 =,
解得:GH=,
则BD=GH=m,
故选:B.
【点睛】
本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形.
2、C
【解析】
解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,
可列方程得,
故选C.
【点睛】
本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.
3、B
【解析】
试题分析:∵二次函数(m为常数)的图象与x轴的一个交点为(1,0),
∴.∴.故选B.
4、C
【解析】
根据中位数的定义解答即可.
【详解】
解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1.
所以这些运动员跳高成绩的中位数是1.1.
故选:C.
【点睛】
本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
5、A
【解析】
过E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依据△ABC∽△GEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论.
【详解】
过E作EG∥BC,交AC于G,则∠BCE=∠CEG.
∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.
∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.
∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5k.
∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.
故选A.
【点睛】
本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.
6、B
【解析】
试题分析:底面积是:9πcm1,
底面周长是6πcm,则侧面积是:×6π×5=15πcm1.
则这个圆锥的全面积为:9π+15π=14πcm1.
故选B.
考点:圆锥的计算.
7、D
【解析】
根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.
【详解】
∵一条抛物线的函数表达式为y=x2+6x+m,
∴这条抛物线的顶点为(-3,m-9),
∴关于x轴对称的抛物线的顶点(-3,9-m),
∵它们的顶点相距10个单位长度.
∴|m-9-(9-m)|=10,
∴2m-18=±10,
当2m-18=10时,m=1,
当2m-18=-10时,m=4,
∴m的值是4或1.
故选D.
【点睛】
本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x轴对称的点和抛物线的关系.
8、D
【解析】
根据边长确定三角形为直角三角形,斜边即为外切圆直径,内切圆半径为,
【详解】
解:如下图,
∵△ABC的三条边长分别是5,13,12,且52+122=132,
∴△ABC是直角三角形,
其斜边为外切圆直径,
∴外切圆半径==6.5,
内切圆半径==2,
故选D.
【点睛】
本题考查了直角三角形内切圆和外切圆的半径,属于简单题,熟悉概念是解题关键.
9、B
【解析】
解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°=45°+60°=105°.故选B.
点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.
10、C
【解析】
先利用勾股定理求出AC的长,然后证明△AEO∽△ACD,根据相似三角形对应边成比例列式求解即可.
【详解】
∵AB=6,BC=8,
∴AC=10(勾股定理);
∴AO=AC=5,
∵EO⊥AC,
∴∠AOE=∠ADC=90°,
∵∠EAO=∠CAD,
∴△AEO∽△ACD,
∴,
即 ,
解得,AE=,
∴DE=8﹣=,
故选:C.
【点睛】
本题考查了矩形的性质,勾股定理,相似三角形对应边成比例的性质,根据相似三角形对应边成比例列出比例式是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,),C(1,k),D(2,),将面积进行转换S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB进而求解.
【详解】
解:过A作x轴垂线,过B作x轴垂线,
点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,
∴A(1,1),B(2,),
∵AC∥BD∥y轴,
∴C(1,k),D(2,),
∵△OAC与△ABD的面积之和为,
,
S△ABD=S梯形AMND﹣S梯形AAMNB,
,
∴k=1,
故答案为1.
【点睛】
本题考查反比例函数的性质,k的几何意义.能够将三角形面积进行合理的转换是解题的关键.
12、
【解析】
根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可.
【详解】
设大和尚x人,小和尚y人,由题意可得
.
故答案为.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组.
13、1
【解析】
根据一次函数图象上的点的坐标特征,将点(0,a)代入直线方程,然后解关于a的方程即可.
【详解】
∵直线y=2x+1经过点(0,a),
∴a=2×0+1,
∴a=1.
故答案为1.
14、①②③
【解析】
(1)由已知条件易得∠A=∠BDF=60°,结合BD=AB=AD,AE=DF,即可证得△AED≌△DFB,从而说明结论①正确;(2)由已知条件可证点B、C、D、G四点共圆,从而可得∠CDN=∠CBM,如图,过点C作CM⊥BF于点M,过点C作CN⊥ED于点N,结合CB=CD即可证得△CBM≌△CDN,由此可得S四边形BCDG=S四边形CMGN=2S△CGN,在Rt△CGN中,由∠CGN=∠DBC=60°,∠CNG=90°可得GN=CG,CN=CG,由此即可求得S△CGN=CG2,从而可得结论②是正确的;(3)过点F作FK∥AB交DE于点K,由此可得△DFK∽△DAE,△GFK∽△GBE,结合AF=2DF和相似三角形的性质即可证得结论④成立.
【详解】
(1)∵四边形ABCD是菱形,BD=AB,
∴AB=BD=BC=DC=DA,
∴△ABD和△CBD都是等边三角形,
∴∠A=∠BDF=60°,
又∵AE=DF,
∴△AED≌△DFB,即结论①正确;
(2)∵△AED≌△DFB,△ABD和△DBC是等边三角形,
∴∠ADE=∠DBF,∠DBC=∠CDB=∠BDA=60°,
∴∠GBC+∠CDG=∠DBF+∠DBC+∠CDB+∠GDB=∠DBC+∠CDB+∠GDB+∠ADE=∠DBC+∠CDB+∠BDA=180°,
∴点B、C、D、G四点共圆,
∴∠CDN=∠CBM,
如下图,过点C作CM⊥BF于点M,过点C作CN⊥ED于点N,
∴∠CDN=∠CBM=90°,
又∵CB=CD,
∴△CBM≌△CDN,
∴S四边形BCDG=S四边形CMGN=2S△CGN,
∵在Rt△CGN中,∠CGN=∠DBC=60°,∠CNG=90°
∴GN=CG,CN=CG,
∴S△CGN=CG2,
∴S四边形BCDG=2S△CGN,=CG2,即结论②是正确的;
(3)如下图,过点F作FK∥AB交DE于点K,
∴△DFK∽△DAE,△GFK∽△GBE,
∴,,
∵AF=2DF,
∴,
∵AB=AD,AE=DF,AF=2DF,
∴BE=2AE,
∴,
∴BG=6FG,即结论③成立.
综上所述,本题中正确的结论是:
故答案为①②③
点睛:本题是一道涉及菱形、相似三角形、全等三角形和含30°角的直角三角形等多种几何图形的判定与性质的题,题目难度较大,熟悉所涉及图形的性质和判定方法,作出如图所示的辅助线是正确解答本题的关键.
15、
【解析】
根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标.
【详解】
∵直角三角形的两直角边为1,2,
∴斜边长为,
那么a的值是:﹣.
故答案为.
【点睛】
此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离.
16、
【解析】
试题分析:若一元二次方程有两个不相等的实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,解不等式即可求出m的取值范围. ∵关于x的方程x2﹣6x+m=0有两个不相等的实数根,
∴△=b2﹣4ac=(﹣6)2﹣4m=36﹣4m>0, 解得:m<1.
考点:根的判别式.
17、1<m≤2
【解析】
首先根据不等式恰好有个整数解求出不等式组的解集为,再确定.
【详解】
不等式组有个整数解,
其整数解有、这个,
.
故答案为:.
【点睛】
此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大,同小取小,大小小大中间找,大大小小找不到.
三、解答题(共7小题,满分69分)
18、证明见解析.
【解析】
(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;
(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.
【详解】
(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,
∴DB=CB,∠ABD=∠EBC,∠ABE=60°,
∵AB⊥EC,
∴∠ABC=90°,
∴∠DBE=∠CBE=30°,
在△BDE和△BCE中,
∵,
∴△BDE≌△BCE;
(2)四边形ABED为菱形;
由(1)得△BDE≌△BCE,
∵△BAD是由△BEC旋转而得,
∴△BAD≌△BEC,
∴BA=BE,AD=EC=ED,
又∵BE=CE,
∴BA=BE=ED= AD
∴四边形ABED为菱形.
考点:旋转的性质;全等三角形的判定与性质;菱形的判定.
19、(1)见解析;(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由见解析.
【解析】
分析:(1)由正方形的性质得出∠A=∠C=90°,AB=BC=CD=DA,由AE=BF=CG=DH证出AH=CF,由SAS证明△AEH≌△CGF即可求解;
(2)连接AC、EG,交点为O;先证明△AOE≌△COG,得出OA=OC,证出O为对角线AC、BD的交点,即O为正方形的中心.
详解:(1)证明:∵四边形ABCD是正方形,
∴∠A=∠C=90°,AB=BC=CD=DA,
∵AE=BF=CG=DH,
∴AH=CF,
在△AEH与△CGF中,
AH=CF,∠A=∠C,AE=CG,
∴△AEH≌△CGF(SAS);
(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由如下:
连接AC、EG,交点为O;如图所示:
∵四边形ABCD是正方形,
∴AB∥CD,
∴∠OAE=∠OCG,
在△AOE和△COG中,
∠OAE=∠OCG,∠AOE=∠COG,AE=CG,
∴△AOE≌△COG(AAS),
∴OA=OC,OE=OG,
即O为AC的中点,
∵正方形的对角线互相平分,
∴O为对角线AC、BD的交点,即O为正方形的中心.
点睛:考查了正方形的性质与判定、全等三角形的判定与性质等知识;本题综合性强,有一定难度,特别是(2)中,需要通过作辅助线证明三角形全等才能得出结果.
20、x1=-,x2=1
【解析】
试题分析:分解因式得出(2x+1)(2x+1﹣3)=0,推出方程2x+1=0,2x+1﹣3=0,求出方程的解即可.
试题解析:解:整理得:(2x+1)2-3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,即2x+1=0,2x+1﹣3=0,解得:x1=﹣,x2=1.
点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大.
21、(1)P=t+2;(2)①当0<t≤8时,w=240;当8<t≤12时,w=2t2+12t+16;当12<t≤24时,w=﹣t2+42t+88;②此范围所对应的月销售量P的最小值为12吨,最大值为19吨.
【解析】
分析:(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入求解可得P=t+2;
(2)①分0<t≤8、8<t≤12和12<t≤24三种情况,根据月毛利润=月销量×每吨的毛利润可得函数解析式;
②求出8<t≤12和12<t≤24时,月毛利润w在满足336≤w≤513条件下t的取值范围,再根据一次函数的性质可得P的最大值与最小值,二者综合可得答案.
详解:(1)设8<t≤24时,P=kt+b,
将A(8,10)、B(24,26)代入,得:
,
解得:,
∴P=t+2;
(2)①当0<t≤8时,w=(2t+8)×=240;
当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;
当12<t≤24时,w=(-t+44)(t+2)=-t2+42t+88;
②当8<t≤12时,w=2t2+12t+16=2(t+3)2-2,
∴8<t≤12时,w随t的增大而增大,
当2(t+3)2-2=336时,解题t=10或t=-16(舍),
当t=12时,w取得最大值,最大值为448,
此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;
当12<t≤24时,w=-t2+42t+88=-(t-21)2+529,
当t=12时,w取得最小值448,
由-(t-21)2+529=513得t=17或t=25,
∴当12<t≤17时,448<w≤513,
此时P=t+2的最小值为14,最大值为19;
综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.
点睛:本题主要考查二次函数的应用,掌握待定系数法求函数解析式及根据相等关系列出分段函数的解析式是解题的前提,利用二次函数的性质求得336≤w≤513所对应的t的取值范围是解题的关键.
22、 (1);(2).
【解析】
(1)直接利用概率公式求解;
(2)画树状图展示所有6种等可能的结果数,再找出乙摸到白球的结果数,然后根据概率公式求解.
【详解】
解:(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是;
故答案为:;
(2)画树状图为:
共有6种等可能的结果数,其中乙摸到白球的结果数为2,
所以乙摸到白球的概率==.
【点睛】
本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
23、 (1)详见解析;(2)4.
【解析】
试题分析:(1)连结OD,由AD平分∠BAC,OA=OD,可证得∠ODA=∠DAE,由平行线的性质可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切线;(2)过点O作OF⊥AC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.
试题解析:
(1)连结OD,
∵AD平分∠BAC,
∴∠DAE=∠DAB,
∵OA=OD,
∴∠ODA=∠DAO,
∴∠ODA=∠DAE,
∴OD∥AE,
∵DE⊥AC
∴OE⊥DE
∴DE是⊙O的切线;
(2)过点O作OF⊥AC于点F,
∴AF=CF=3,
∴OF=,
∵∠OFE=∠DEF=∠ODE=90°,
∴四边形OFED是矩形,
∴DE=OF=4.
考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.
24、(1)40、126(2)240人(3)
【解析】
(1)用2部的人数10除以2部人数所占的百分比25%即可求出本次调查的学生数,根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“1部”所在扇形的圆心角;
(2)用1600乘以4部所占的百分比即可;
(3)根据树状图所得的结果,判断他们选中同一名著的概率.
【详解】
(1)调查的总人数为:10÷25%=40,
∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,
则扇形统计图中“1部”所在扇形的圆心角为:×360°=126°;
故答案为40、126;
(2)预估其中4部都读完了的学生有1600×=240人;
(3)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,
画树状图可得:
共有16种等可能的结果,其中选中同一名著的有4种,
故P(两人选中同一名著)==.
【点睛】
本题考查了扇形统计图和条形统计图的综合,用样本估计总体,列表法或树状图法求概率.解答此类题目,要善于发现二者之间的关联点,即两个统计图都知道了哪个量的数据,从而用条形统计图中的具体数量除以扇形统计图中占的百分比,求出样本容量,进而求解其它未知的量.
黑龙江省桦南县重点中学2021-2022学年中考数学全真模拟试题含解析: 这是一份黑龙江省桦南县重点中学2021-2022学年中考数学全真模拟试题含解析,共24页。试卷主要包含了在,,则的值为,如图,将△ABC绕点C等内容,欢迎下载使用。
黑龙江省大庆市第六十九中学2022年中考数学全真模拟试卷含解析: 这是一份黑龙江省大庆市第六十九中学2022年中考数学全真模拟试卷含解析,共20页。试卷主要包含了的相反数是,函数的图象上有两点,,若,则等内容,欢迎下载使用。
北京七中学2021-2022学年中考数学全真模拟试题含解析: 这是一份北京七中学2021-2022学年中考数学全真模拟试题含解析,共18页。试卷主要包含了下列各式正确的是,下列实数中,最小的数是,计算的结果是,已知抛物线y=x2+等内容,欢迎下载使用。