终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    黑龙江省哈尔滨四十七中学2021-2022学年中考猜题数学试卷含解析

    立即下载
    加入资料篮
    黑龙江省哈尔滨四十七中学2021-2022学年中考猜题数学试卷含解析第1页
    黑龙江省哈尔滨四十七中学2021-2022学年中考猜题数学试卷含解析第2页
    黑龙江省哈尔滨四十七中学2021-2022学年中考猜题数学试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江省哈尔滨四十七中学2021-2022学年中考猜题数学试卷含解析

    展开

    这是一份黑龙江省哈尔滨四十七中学2021-2022学年中考猜题数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.内角和为540°的多边形是( )
    A.B.C.D.
    2.下列美丽的图案中,不是轴对称图形的是( )
    A.B.C.D.
    3.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于( )
    A.c+bB.b﹣cC.c﹣2a+bD.c﹣2a﹣b
    4.如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为( )
    A.2π﹣B.π+C.π+2D.2π﹣2
    5.下列运算正确的是( )
    A.B.
    C.a2•a3=a5D.(2a)3=2a3
    6.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是( )
    A.45°B.85°C.90°D.95°
    7.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示csα的值,错误的是( )
    A.B.C.D.
    8.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是( )
    A.m<1B.m>﹣1C.m>1D.m<﹣1
    9.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 ()
    A.B.C.D.
    10.已知一组数据,,,,的平均数是2,方差是,那么另一组数据,,,,,的平均数和方差分别是 .
    A.B.C.D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,⊙C 经过原点且与两坐标轴分别交于点 A 与点 B,点 B 的坐标为(﹣,0),M 是圆上一点,∠BMO=120°.⊙C 圆心 C 的坐标是_____.
    12.2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m、n的式子表示AB的长为______.
    13.若使代数式有意义,则x的取值范围是_____.
    14.如图,在平面直角坐标系xOy中,直线l:y=x-与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,按此规律进行下去,则点A3的横坐标为______;点A2018的横坐标为______.
    15.如图,AB是半径为2的⊙O的弦,将沿着弦AB折叠,正好经过圆心O,点C是折叠后的上一动点,连接并延长BC交⊙O于点D,点E是CD的中点,连接AC,AD,EO.则下列结论:①∠ACB=120°,②△ACD是等边三角形,③EO的最小值为1,其中正确的是_____.(请将正确答案的序号填在横线上)
    16.如图,在⊙O中,点B为半径OA上一点,且OA=13,AB=1,若CD是一条过点B的动弦,则弦CD的最小值为_____.
    17.关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根,则m的取值范围是_____.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上.
    (I)AC的长等于_____.
    (II)若AC边与网格线的交点为P,请找出两条过点P的直线来三等分△ABC的面积.请在如图所示的网格中,用无刻度的直尺,画出这两条直线,并简要说明这两条直线的位置是如何找到的_____(不要求证明).
    19.(5分)解方程:=1.
    20.(8分)平面直角坐标系xOy(如图),抛物线y=﹣x2+2mx+3m2(m>0)与x轴交于点A、B(点A在点B左侧),与y轴交于点C,顶点为D,对称轴为直线l,过点C作直线l的垂线,垂足为点E,联结DC、BC.
    (1)当点C(0,3)时,
    ①求这条抛物线的表达式和顶点坐标;
    ②求证:∠DCE=∠BCE;
    (2)当CB平分∠DCO时,求m的值.
    21.(10分)如图,在△ABC中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止.求证:△ABE≌△ACD;若AB=BE,求∠DAE的度数;
    拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.
    22.(10分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.
    (1)求双曲线的解析式;
    (2)求点C的坐标,并直接写出y1<y2时x的取值范围.
    23.(12分)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.
    (1)用a,b,x表示纸片剩余部分的面积;
    (2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.
    24.(14分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.求从袋中随机摸出一球,标号是1的概率;从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    试题分析:设它是n边形,根据题意得,(n﹣2)•180°=140°,解得n=1.故选C.
    考点:多边形内角与外角.
    2、A
    【解析】
    根据轴对称图形的概念对各选项分析判断即可得解.
    【详解】
    解:A、不是轴对称图形,故本选项正确;
    B、是轴对称图形,故本选项错误;
    C、是轴对称图形,故本选项错误;
    D、是轴对称图形,故本选项错误.
    故选A.
    【点睛】
    本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    3、A
    【解析】
    根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c-a>0,a+b<0,根据绝对值的性质化简计算.
    【详解】
    由数轴可知,b<a<0<c,
    ∴c-a>0,a+b<0,
    则|c-a|-|a+b|=c-a+a+b=c+b,
    故选A.
    【点睛】
    本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.
    4、D
    【解析】
    分析:观察图形可知,阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC,然后根据扇形面积公式和三角形面积公式计算即可.
    详解:连接CD.
    ∵∠C=90°,AC=2,AB=4,
    ∴BC==2.
    ∴阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC
    =
    =
    .
    故选:D.
    点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC是解答本题的关键.
    5、C
    【解析】
    根据算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则逐一计算即可判断.
    【详解】
    解:A、=2,此选项错误;
    B、不能进一步计算,此选项错误;
    C、a2•a3=a5,此选项正确;
    D、(2a)3=8a3,此选项计算错误;
    故选:C.
    【点睛】
    本题主要考查二次根式的加减和幂的运算,解题的关键是掌握算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则.
    6、B
    【解析】
    解:∵AC是⊙O的直径,∴∠ABC=90°,
    ∵∠C=50°,∴∠BAC=40°,
    ∵∠ABC的平分线BD交⊙O于点D,∴∠ABD=∠DBC=45°,
    ∴∠CAD=∠DBC=45°,
    ∴∠BAD=∠BAC+∠CAD=40°+45°=85°,
    故选B.
    【点睛】
    本题考查圆周角定理;圆心角、弧、弦的关系.
    7、D
    【解析】
    根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.
    【详解】
    csα=.
    故选D.
    【点睛】
    熟悉掌握锐角三角函数的定义是关键.
    8、C
    【解析】
    试题解析:关于的一元二次方程没有实数根,

    解得:
    故选C.
    9、A
    【解析】
    从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形.故选A.
    10、D
    【解析】
    根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.
    【详解】
    解:∵数据x1,x2,x3,x4,x5的平均数是2,
    ∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;
    ∵数据x1,x2,x3,x4,x5的方差为,
    ∴数据3x1,3x2,3x3,3x4,3x5的方差是×32=3,
    ∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,
    故选D.
    【点睛】
    本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.
    二、填空题(共7小题,每小题3分,满分21分)
    11、(,)
    【解析】
    连接AB,OC,由圆周角定理可知AB为⊙C的直径,再根据∠BMO=120°可求出∠BAO以及∠BCO的度数,在Rt△COD中,解直角三角形即可解决问题;
    【详解】
    连接AB,OC,
    ∵∠AOB=90°,
    ∴AB为⊙C的直径,
    ∵∠BMO=120°,
    ∴∠BAO=60°,
    ∴∠BCO=2∠BAO=120°,
    过C作CD⊥OB于D,则OD=OB,∠DCB=∠DCO=60°,
    ∵B(-,0),
    ∴BD=OD=
    在Rt△COD中.CD=OD•tan30°=,
    ∴C(-,),
    故答案为C(-,).
    【点睛】
    本题考查的是圆心角、弧、弦的关系及圆周角定理、直角三角形的性质、坐标与图形的性质及特殊角的三角函数值,根据题意画出图形,作出辅助线,利用数形结合求解是解答此题的关键.
    12、
    【解析】
    过点C作CE⊥CF延长BA交CE于点E,先求得DF的长,可得到AE的长,最后可求得AB的长.
    【详解】
    解:延长BA交CE于点E,设CF⊥BF于点F,如图所示.
    在Rt△BDF中,BF=n,∠DBF=30°,
    ∴.
    在Rt△ACE中,∠AEC=90°,∠ACE=45°,
    ∴AE=CE=BF=n,
    ∴.
    故答案为:.
    【点睛】
    此题考查解直角三角形的应用,解题的关键在于做辅助线.
    13、x≠﹣2
    【解析】
    直接利用分式有意义则其分母不为零,进而得出答案.
    【详解】
    ∵分式有意义,
    ∴x的取值范围是:x+2≠0,
    解得:x≠−2.
    故答案是:x≠−2.
    【点睛】
    本题考查了分式有意义的条件,解题的关键是熟练的掌握分式有意义的条件.
    14、
    【解析】
    利用一次函数图象上点的坐标特征可求出点B1的坐标,根据等边三角形的性质可求出点A1的坐标,同理可得出点B2、A2、A3的坐标,根据点An坐标的变化即可得出结论.
    【详解】
    当y=0时,有x-=0,
    解得:x=1,
    ∴点B1的坐标为(1,0),
    ∵A1OB1为等边三角形,
    ∴点A1的坐标为(,).
    当y=时.有x-=,
    解得:x=,
    ∴点B2的坐标为(,),
    ∵A2A1B2为等边三角形,
    ∴点A2的坐标为(,).
    同理,可求出点A3的坐标为(,),点A2018的坐标为(,).
    故答案为;.
    【点睛】
    本题考查了一次函数图象上点的坐标特征、等边三角形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合等边三角形的性质找出点An横坐标的变化是解题的关键.
    15、①②
    【解析】
    根据折叠的性质可知,结合垂径定理、三角形的性质、同圆或等圆中圆周角与圆心的性质等可以判断①②是否正确,EO的最小值问题是个难点,这是一个动点问题,只要把握住E在什么轨迹上运动,便可解决问题.
    【详解】
    如图1,连接OA和OB,作OF⊥AB.
    由题知: 沿着弦AB折叠,正好经过圆心O
    ∴OF=OA= OB
    ∴∠AOF=∠BOF=60°
    ∴∠AOB=120°
    ∴∠ACB=120°(同弧所对圆周角相等)
    ∠D=∠AOB=60°(同弧所对的圆周角是圆心角的一半)
    ∴∠ACD=180°-∠ACB=60°
    ∴△ACD是等边三角形(有两个角是60°的三角形是等边三角形)
    故,①②正确
    下面研究问题EO的最小值是否是1

    如图2,连接AE和EF
    ∵△ACD是等边三角形,E是CD中点
    ∴AE⊥BD(三线合一)
    又∵OF⊥AB
    ∴F是AB中点
    即,EF是△ABE斜边中线
    ∴AF=EF=BF
    即,E点在以AB为直径的圆上运动.
    所以,如图3,当E、O、F在同一直线时,OE长度最小
    此时,AE=EF,AE⊥EF
    ∵⊙O的半径是2,即OA=2,OF=1
    ∴AF= (勾股定理)
    ∴OE=EF-OF=AF-OF=-1
    所以,③不正确
    综上所述:①②正确,③不正确.
    故答案是:①②.
    【点睛】
    考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.
    16、10
    【解析】
    连接OC,当CD⊥OA时CD的值最小,然后根据垂径定理和勾股定理求解即可.
    【详解】
    连接OC,当CD⊥OA时CD的值最小,
    ∵OA=13,AB=1,
    ∴OB=13-1=12,
    ∴BC=,
    ∴CD=5×2=10.
    故答案为10.
    【点睛】
    本题考查了垂径定理及勾股定理,垂径定理是:垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧 .
    17、m≤1
    【解析】
    根据一元二次方程有实数根,得出△≥0,建立关于m的不等式,求出m的取值范围即可.
    【详解】
    解:由题意知,△=4﹣4(m﹣1)≥0,
    ∴m≤1,
    故答案为:m≤1.
    【点睛】
    此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0,方程有两个不相等的实数根;△=0,方程有两个相等的实数根;△<0,方程没有实数根是本题的关键.
    三、解答题(共7小题,满分69分)
    18、 作a∥b∥c∥d,可得交点P与P′
    【解析】
    (1)根据勾股定理计算即可;
    (2)利用平行线等分线段定理即可解决问题.
    【详解】
    (I)AC==,
    故答案为:;
    (II)如图直线l1,直线l2即为所求;
    理由:∵a∥b∥c∥d,且a与b,b与c,c与d之间的距离相等,
    ∴CP=PP′=P′A,
    ∴S△BCP=S△ABP′=S△ABC.
    故答案为作a∥b∥c∥d,可得交点P与P′.
    【点睛】
    本题考查作图-应用与设计,勾股定理,平行线等分线段定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    19、
    【解析】
    先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解.
    【详解】
    原方程变形为,
    方程两边同乘以(2x﹣1),得2x﹣5=1(2x﹣1),
    解得 .
    检验:把代入(2x﹣1),(2x﹣1)≠0,
    ∴是原方程的解,
    ∴原方程的.
    【点睛】
    本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根.
    20、(1)y=﹣x2+2x+3;D(1,4);(2)证明见解析;(3)m=;
    【解析】
    (1)①把C点坐标代入y=﹣x2+2mx+3m2可求出m的值,从而得到抛物线解析式,
    然后把一般式配成顶点式得到D点坐标;
    ②如图1,先解方程﹣x2+2x+3=0得B(3,0),则可判断△OCB为等腰直角三角形得到∠
    OBC=45°,再证明△CDE为等腰直角三角形得到∠DCE=45°,从而得到∠DCE=∠BCE;
    (2)抛物线的对称轴交x轴于F点,交直线BC于G点,如图2,把一般式配成顶点式得
    到抛物线的对称轴为直线x=m,顶点D的坐标为(m,4m2),通过解方程﹣x2+2mx+3m2=0
    得B(3m,0),同时确定C(0,3m2),再利用相似比表示出GF=2m2,则DG=2m2,接着证
    明∠DCG=∠DGC得到DC=DG,所以m2+(4m2﹣3m2)2=4m4,然后解方程可求出m.
    【详解】
    (1)①把C(0,3)代入y=﹣x2+2mx+3m2得3m2=3,解得m1=1,m2=﹣1(舍去),
    ∴抛物线解析式为y=﹣x2+2x+3;

    ∴顶点D为(1,4);
    ②证明:如图1,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则B(3,0),
    ∵OC=OB,
    ∴△OCB为等腰直角三角形,
    ∴∠OBC=45°,
    ∵CE⊥直线x=1,
    ∴∠BCE=45°,
    ∵DE=1,CE=1,
    ∴△CDE为等腰直角三角形,
    ∴∠DCE=45°,
    ∴∠DCE=∠BCE;
    (2)解:抛物线的对称轴交x轴于F点,交直线BC于G点,如图2,

    ∴抛物线的对称轴为直线x=m,顶点D的坐标为(m,4m2),
    当y=0时,﹣x2+2mx+3m2=0,解得x1=﹣m,x2=3m,则B(3m,0),
    当x=0时,y=﹣x2+2mx+3m2=3m2,则C(0,3m2),
    ∵GF∥OC,
    ∴即 解得GF=2m2,
    ∴DG=4m2﹣2m2=2m2,
    ∵CB平分∠DCO,
    ∴∠DCB=∠OCB,
    ∵∠OCB=∠DGC,
    ∴∠DCG=∠DGC,
    ∴DC=DG,
    即m2+(4m2﹣3m2)2=4m4,

    而m>0,

    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质;会利用待定系数法求函数解析式;灵活应用等腰直角三角形的性质进行几何计算;理解坐标与图形性质,记住两点间的距离公式.
    21、(1)证明见解析;(2);拓展:
    【解析】
    (1)由题意得BD=CE,得出BE=CD,证出AB=AC,由SAS证明△ABE≌△ACD即可;
    (2)由等腰三角形的性质和三角形内角和定理求出∠BEA=∠EAB=70°,证出AC=CD,由等腰三角形的性质得出∠ADC=∠DAC=70°,即可得出∠DAE的度数;
    拓展:对△ABD的外心位置进行推理,即可得出结论.
    【详解】
    (1)证明:∵点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,
    ∴BD=CE,
    ∴BC-BD=BC-CE,即BE=CD,
    ∵∠B=∠C=40°,
    ∴AB=AC,
    在△ABE和△ACD中,

    ∴△ABE≌△ACD(SAS);
    (2)解:∵∠B=∠C=40°,AB=BE,
    ∴∠BEA=∠EAB=(180°-40°)=70°,
    ∵BE=CD,AB=AC,
    ∴AC=CD,
    ∴∠ADC=∠DAC=(180°-40°)=70°,
    ∴∠DAE=180°-∠ADC-∠BEA=180°-70°-70°=40°;
    拓展:
    解:若△ABD的外心在其内部时,则△ABD是锐角三角形.
    ∴∠BAD=140°-∠BDA<90°.
    ∴∠BDA>50°,
    又∵∠BDA<90°,
    ∴50°<∠BDA<90°.
    【点睛】
    本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外心等知识;熟练掌握等腰三角形的性质是解题的关键.
    22、(1);(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.
    【解析】
    【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;
    (1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.
    【详解】(1)∵点A在直线y1=1x﹣1上,
    ∴设A(x,1x﹣1),
    过A作AC⊥OB于C,
    ∵AB⊥OA,且OA=AB,
    ∴OC=BC,
    ∴AC=OB=OC,
    ∴x=1x﹣1,
    x=1,
    ∴A(1,1),
    ∴k=1×1=4,
    ∴;
    (1)∵,解得:,,
    ∴C(﹣1,﹣4),
    由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.
    【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.
    23、(1)ab﹣4x1(1)
    【解析】
    (1)边长为x的正方形面积为x1,矩形面积减去4个小正方形的面积即可.
    (1)依据剪去部分的面积等于剩余部分的面积,列方程求出x的值即可.
    【详解】
    解:(1)ab﹣4x1.
    (1)依题意有:,将a=6,b=4,代入上式,得x1=2.
    解得x1=,x1=(舍去).
    ∴正方形的边长为.
    24、(1);(2)这个游戏不公平,理由见解析.
    【解析】
    (1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;
    (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.
    【详解】
    解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,
    故从袋中随机摸出一球,标号是1的概率为:;
    (2)这个游戏不公平.
    画树状图得:
    ∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,
    ∴P(甲胜)=,P(乙胜)=.
    ∴P(甲胜)≠P(乙胜),
    故这个游戏不公平.
    【点睛】
    本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.

    相关试卷

    黑龙江省黑河市重点中学2021-2022学年中考猜题数学试卷含解析:

    这是一份黑龙江省黑河市重点中学2021-2022学年中考猜题数学试卷含解析,共20页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    2022年黑龙江省哈尔滨市呼兰区重点中学中考猜题数学试卷含解析:

    这是一份2022年黑龙江省哈尔滨市呼兰区重点中学中考猜题数学试卷含解析,共25页。试卷主要包含了下列图形中一定是相似形的是等内容,欢迎下载使用。

    2021-2022学年威海市重点中学中考猜题数学试卷含解析:

    这是一份2021-2022学年威海市重点中学中考猜题数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,方程=的解为,已知等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map