终身会员
搜索
    上传资料 赚现金

    黑龙江省重点中学2022年中考五模数学试题含解析

    立即下载
    加入资料篮
    黑龙江省重点中学2022年中考五模数学试题含解析第1页
    黑龙江省重点中学2022年中考五模数学试题含解析第2页
    黑龙江省重点中学2022年中考五模数学试题含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江省重点中学2022年中考五模数学试题含解析

    展开

    这是一份黑龙江省重点中学2022年中考五模数学试题含解析,共19页。试卷主要包含了如图1是一座立交桥的示意图,下列计算正确的是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,点O′在第一象限,⊙O′与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O′的坐标是(  )

    A.(6,4) B.(4,6) C.(5,4) D.(4,5)
    2.如图,在平面直角坐标系中,点A在x轴的正半轴上,点B的坐标为(0,4),将△ABO绕点B逆时针旋转60°后得到△A'BO',若函数y=(x>0)的图象经过点O',则k的值为(  )

    A.2 B.4 C.4 D.8
    3.下列命题中真命题是( )
    A.若a2=b2,则a=b B.4的平方根是±2
    C.两个锐角之和一定是钝角 D.相等的两个角是对顶角
    4.一、单选题
    如图: 在中,平分,平分,且交于,若,则等于( )

    A.75 B.100 C.120 D.125
    5.在实数,有理数有( )
    A.1个 B.2个 C.3个 D.4个
    6.从边长为的大正方形纸板中挖去一个边长为的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )

    A. B.
    C. D.
    7.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )

    A.42 B.96 C.84 D.48
    8.如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且,,所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示.结合题目信息,下列说法错误的是(  )

    A.甲车在立交桥上共行驶8s B.从F口出比从G口出多行驶40m C.甲车从F口出,乙车从G口出 D.立交桥总长为150m
    9.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是( )
    A.30厘米、45厘米; B.40厘米、80厘米; C.80厘米、120厘米; D.90厘米、120厘米
    10.下列计算正确的是(  )
    A.(a)=a B.a+a=a
    C.(3a)•(2a)=6a D.3a﹣a=3
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.
    (1)k的值是 ;
    (2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是 .

    12.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的________(填百分数).

    13.若反比例函数y=的图象在每一个象限中,y随着x的增大而减小,则m的取值范围是_____.
    14.计算:___.
    15.科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近.其中2540000用科学记数法表示为_____.
    16.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.

    三、解答题(共8题,共72分)
    17.(8分)解不等式 ,并把它的解集表示在数轴上.

    18.(8分)解方程
    19.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴于D,若OB=1,OD=6,△AOB的面积为1.求一次函数与反比例函数的表达式;当x>0时,比较kx+b与的大小.

    20.(8分)如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.
    (1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD=  BD.
    (2)探究证明
    将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明
    (3)拓展延伸
    在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.

    21.(8分)抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.求此抛物线的解析式;已知点D 在第四象限的抛物线上,求点D关于直线BC对称的点D’的坐标;在(2)的条件下,连结BD,问在x轴上是否存在点P,使,若存在,请求出P点的坐标;若不存在,请说明理由.

    22.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:
    x/元

    15
    20
    25

    y/件

    25
    20
    15

    已知日销售量y是销售价x的一次函数.求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?
    23.(12分)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OF⊥AB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且∠ACE+∠AFO=180°.求证:EM是⊙O的切线;若∠A=∠E,BC=,求阴影部分的面积.(结果保留和根号).

    24.某水果批发市场香蕉的价格如下表
    购买香蕉数(千克)
    不超过20千克
    20千克以上但不超过40千克
    40千克以上
    每千克的价格
    6元
    5元
    4元
    张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    过O'作O'C⊥AB于点C,过O'作O'D⊥x轴于点D,由切线的性质可求得O'D的长,则可得O'B的长,由垂径定理可求得CB的长,在Rt△O'BC中,由勾股定理可求得O'C的长,从而可求得O'点坐标.
    【详解】

    如图,过O′作O′C⊥AB于点C,过O′作O′D⊥x轴于点D,连接O′B,
    ∵O′为圆心,
    ∴AC=BC,
    ∵A(0,2),B(0,8),
    ∴AB=8−2=6,
    ∴AC=BC=3,
    ∴OC=8−3=5,
    ∵⊙O′与x轴相切,
    ∴O′D=O′B=OC=5,
    在Rt△O′BC中,由勾股定理可得O′C===4,
    ∴P点坐标为(4,5),
    故选:D.
    【点睛】
    本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和坐标计算.
    2、C
    【解析】
    根据题意可以求得点O'的坐标,从而可以求得k的值.
    【详解】
    ∵点B的坐标为(0,4),
    ∴OB=4,
    作O′C⊥OB于点C,
    ∵△ABO绕点B逆时针旋转60°后得到△A'BO',
    ∴O′B=OB=4,
    ∴O′C=4×sin60°=2,BC=4×cos60°=2,
    ∴OC=2,
    ∴点O′的坐标为:(2,2),
    ∵函数y=(x>0)的图象经过点O',
    ∴2=,得k=4,
    故选C.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征、坐标与图形的变化,解题的关键是利用数形结合的思想和反比例函数的性质解答.
    3、B
    【解析】
    利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.
    【详解】
    A、若a2=b2,则a=±b,错误,是假命题;
    B、4的平方根是±2,正确,是真命题;
    C、两个锐角的和不一定是钝角,故错误,是假命题;
    D、相等的两个角不一定是对顶角,故错误,是假命题.
    故选B.
    【点睛】
    考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.
    4、B
    【解析】
    根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.
    【详解】
    解:∵CE平分∠ACB,CF平分∠ACD,
    ∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,
    ∴△EFC为直角三角形,
    又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
    ∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
    ∴CM=EM=MF=5,EF=10,
    由勾股定理可知CE2+CF2=EF2=1.
    故选:B.
    【点睛】
    本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.
    5、D
    【解析】
    试题分析:根据有理数是有限小数或无限循环小数,可得答案:
    是有理数,故选D.
    考点:有理数.
    6、D
    【解析】
    分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.
    【详解】
    阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).
    即:a2﹣b2=(a+b)(a﹣b).
    所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).
    故选:D.
    【点睛】
    考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.
    7、D
    【解析】
    由平移的性质知,BE=6,DE=AB=10,
    ∴OE=DE﹣DO=10﹣4=6,
    ∴S四边形ODFC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=1.
    故选D.
    【点睛】
    本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.
    8、C
    【解析】
    分析:结合2个图象分析即可.
    详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:,故正确.
    B.3段弧的长度都是:从F口出比从G口出多行驶40m,正确.
    C.分析图2可知甲车从G口出,乙车从F口出,故错误.
    D.立交桥总长为:故正确.
    故选C.
    点睛:考查图象问题,观察图象,读懂图象是解题的关键.
    9、C
    【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;
    当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;
    当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;
    所以A、B、D选项不符合题意,C选项符合题意,
    故选C.
    10、A
    【解析】
    根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.
    【详解】
    A.(a2)3=a2×3=a6,故本选项正确;
    B.a2+a2=2a2,故本选项错误;
    C.(3a)•(2a)2=(3a)•(4a2)=12a1+2=12a3,故本选项错误;
    D.3a﹣a=2a,故本选项错误.
    故选A.
    【点睛】
    本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、(1)-2;(2)
    【解析】
    (1)设点P的坐标为(m,n),则点Q的坐标为(m−1,n+2),
    依题意得:

    解得:k=−2.
    故答案为−2.
    (2)∵BO⊥x轴,CE⊥x轴,
    ∴BO∥CE,
    ∴△AOB∽△AEC.
    又∵,

    令一次函数y=−2x+b中x=0,则y=b,
    ∴BO=b;
    令一次函数y=−2x+b中y=0,则0=−2x+b,
    解得:x=,即AO=.
    ∵△AOB∽△AEC,且,
    ∴,
    ∴AE=,AO=,CE=BO=b,OE=AE−AO=.
    ∵OE⋅CE=|−4|=4,即=4,
    解得:b=,或b=− (舍去).
    故答案为.
    12、.
    【解析】
    用被抽查的100名学生中参加社会实践活动时间在2~2.5小时之间的学生除以抽查的学生总人数,即可得解.
    【详解】
    由频数分布直方图知,2~2.5小时的人数为100﹣(8+24+30+10)=28,则该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的百分比为100%=28%.
    故答案为:28%.
    【点睛】
    本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
    13、m>1
    【解析】
    ∵反比例函数的图象在其每个象限内,y随x的增大而减小,
    ∴>0,
    解得:m>1,
    故答案为m>1.
    14、
    【解析】
    直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.
    【详解】
    原式.
    故答案为.
    【点睛】
    本题考查了实数运算,正确化简各数是解题的关键.
    15、2.54×1
    【解析】
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】2540000的小数点向左移动6位得到2.54,
    所以,2540000用科学记数法可表示为:2.54×1,
    故答案为2.54×1.
    【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    16、
    【解析】
    试题解析:∵共6个数,小于5的有4个,∴P(小于5)==.故答案为.

    三、解答题(共8题,共72分)
    17、x<5;数轴见解析
    【解析】
    【分析】将(x-2)当做一个整体,先移项,然后再按解一元一次不等式的一般步骤进行求解,求得解集后在数轴上表示即可.
    【详解】移项,得 ,
    去分母,得 ,
    移项,得,
    ∴不等式的解集为,
    在数轴上表示如图所示:

    【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,根据不等式的特点选择恰当的方法进行求解是关键.
    18、x=-1.
    【解析】
    解:方程两边同乘x-2,得2x=x-2+1
    解这个方程,得x= -1
    检验:x= -1时,x-2≠0
    ∴原方程的解是x= -1
    首先去掉分母,观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解
    19、 (1) ,;(2) 当0<x<6时,kx+b<,当x>6时,kx+b>
    【解析】
    (1)根据点A和点B的坐标求出一次函数的解析式,再求出C的坐标6,2)
    ,利用待定系数法求解即可求出解析式
    (2)由C(6,2)分析图形可知,当0<x<6时,kx+b<,当x>6时,kx+b>
    【详解】
    (1)S△AOB= OA•OB=1,
    ∴OA=2,
    ∴点A的坐标是(0,﹣2),
    ∵B(1,0)


    ∴y=x﹣2.
    当x=6时,y= ×6﹣2=2,∴C(6,2)
    ∴m=2×6=3.
    ∴y=.
    (2)由C(6,2),观察图象可知:
    当0<x<6时,kx+b<,当x>6时,kx+b>.
    【点睛】
    此题考查反比例函数与一次函数的交点问题,解题关键在于求出C的坐标
    20、(1);(2)AD﹣DC=BD;(3)BD=AD=+1.
    【解析】
    (1)根据全等三角形的性质求出DC,AD,BD之间的数量关系
    (2)过点B作BE⊥BD,交MN于点E.AD交BC于O,
    证明,得到,,
    根据为等腰直角三角形,得到,
    再根据,即可解出答案.
    (3)根据A、B、C、D四点共圆,得到当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.
    在DA上截取一点H,使得CD=DH=1,则易证,
    由即可得出答案.
    【详解】
    解:(1)如图1中,

    由题意:,
    ∴AE=CD,BE=BD,
    ∴CD+AD=AD+AE=DE,
    ∵是等腰直角三角形,
    ∴DE=BD,
    ∴DC+AD=BD,
    故答案为.
    (2).
    证明:如图,过点B作BE⊥BD,交MN于点E.AD交BC于O.

    ∵,
    ∴,
    ∴.
    ∵,,,
    ∴,
    ∴.又∵,
    ∴,
    ∴,,
    ∴为等腰直角三角形,.
    ∵,
    ∴.
    (3)如图3中,易知A、B、C、D四点共圆,当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.

    此时DG⊥AB,DB=DA,在DA上截取一点H,使得CD=DH=1,则易证,
    ∴.
    【点睛】
    本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.
    21、(1)
    (2)(0,-1)
    (3)(1,0)(9,0)
    【解析】
    (1)将A(−1,0)、C(0,−3)两点坐标代入抛物线y=ax2+bx−3a中,列方程组求a、b的值即可;
    (2)将点D(m,−m−1)代入(1)中的抛物线解析式,求m的值,再根据对称性求点D关于直线BC对称的点D'的坐标;
    (3)分两种情形①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,②连接BD′,过点C作CP′∥BD′,交x轴于P′,分别求出直线CP和直线CP′的解析式即可解决问题.
    【详解】
    解:(1)将A(−1,0)、C(0,−3)代入抛物线y=ax2+bx−3a中,
    得 ,
    解得
    ∴y=x2−2x−3;
    (2)将点D(m,−m−1)代入y=x2−2x−3中,得
    m2−2m−3=−m−1,
    解得m=2或−1,
    ∵点D(m,−m−1)在第四象限,
    ∴D(2,−3),
    ∵直线BC解析式为y=x−3,
    ∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3−2=1,
    ∴点D关于直线BC对称的点D'(0,−1);
    (3)存在.满足条件的点P有两个.
    ①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,
    ∵直线BD解析式为y=3x−9,
    ∵直线CP过点C,
    ∴直线CP的解析式为y=3x−3,
    ∴点P坐标(1,0),
    ②连接BD′,过点C作CP′∥BD′,交x轴于P′,
    ∴∠P′CB=∠D′BC,
    根据对称性可知∠D′BC=∠CBD,
    ∴∠P′CB=∠CBD,
    ∵直线BD′的解析式为
    ∵直线CP′过点C,
    ∴直线CP′解析式为,
    ∴P′坐标为(9,0),

    综上所述,满足条件的点P坐标为(1,0)或(9,0).
    【点睛】
    本题考查了二次函数的综合运用.关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC的特殊性求点的坐标,学会分类讨论,不能漏解.
    22、();()此时每天利润为元.
    【解析】
    试题分析:(1) 根据题意用待定系数法即可得解;
    (2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.
    试题解析:()设,将,和,代入,得:,解得:,
    ∴;
    ()将代入()中函数表达式得:

    ∴利润(元),
    答:此时每天利润为元.
    23、(1)详见解析;(2);
    【解析】
    (1)连接OC,根据垂直的定义得到∠AOF=90°,根据三角形的内角和得到∠ACE=90°+∠A,根据等腰三角形的性质得到∠OCE=90°,得到OC⊥CE,于是得到结论;
    (2)根据圆周角定理得到∠ACB=90°,推出∠ACO=∠BCE,得到△BOC是等边三角形,根据扇形和三角形的面积公式即可得到结论.
    【详解】
    :(1)连接OC,
    ∵OF⊥AB,
    ∴∠AOF=90°,
    ∴∠A+∠AFO+90°=180°,
    ∵∠ACE+∠AFO=180°,
    ∴∠ACE=90°+∠A,
    ∵OA=OC,
    ∴∠A=∠ACO,
    ∴∠ACE=90°+∠ACO=∠ACO+∠OCE,
    ∴∠OCE=90°,
    ∴OC⊥CE,
    ∴EM是⊙O的切线;
    (2)∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠ACO+∠BCO=∠BCE+∠BCO=90°,
    ∴∠ACO=∠BCE,
    ∵∠A=∠E,
    ∴∠A=∠ACO=∠BCE=∠E,
    ∴∠ABC=∠BCO+∠E=2∠A,
    ∴∠A=30°,
    ∴∠BOC=60°,
    ∴△BOC是等边三角形,
    ∴OB=BC=,
    ∴阴影部分的面积=,
    【点睛】
    本题考查了切线的判定,等腰三角形的判定和性质,扇形的面积计算,连接OC 是解题的关键.
    24、第一次买14千克香蕉,第二次买36千克香蕉
    【解析】
    本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=1.对张强买的香蕉的千克数,应分情况讨论:①当0<x≤20,y≤40;②当0<x≤20,y>40③当20<x<3时,则3<y<2.
    【详解】
    设张强第一次购买香蕉xkg,第二次购买香蕉ykg,由题意可得0<x<3.
    则①当0<x≤20,y≤40,则题意可得

    解得.
    ②当0<x≤20,y>40时,由题意可得

    解得.(不合题意,舍去)
    ③当20<x<3时,则3<y<2,此时张强用去的款项为
    5x+5y=5(x+y)=5×50=30<1(不合题意,舍去);
    ④当20<x≤40 y>40时,总质量将大于60kg,不符合题意,
    答:张强第一次购买香蕉14kg,第二次购买香蕉36kg.
    【点睛】
    本题主要考查学生分类讨论的思想.找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答.

    相关试卷

    2023年黑龙江省哈尔滨重点中学中考数学三模试卷(含解析):

    这是一份2023年黑龙江省哈尔滨重点中学中考数学三模试卷(含解析),共22页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2022年重点中学中考数学五模试卷含解析:

    这是一份2022年重点中学中考数学五模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,解分式方程时,去分母后变形为等内容,欢迎下载使用。

    2022年黑龙江省黑河市重点中学中考联考数学试题含解析:

    这是一份2022年黑龙江省黑河市重点中学中考联考数学试题含解析,共19页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map