黑龙江省伊春市重点达标名校2022年中考一模数学试题含解析
展开这是一份黑龙江省伊春市重点达标名校2022年中考一模数学试题含解析,共27页。试卷主要包含了如图,已知,,则的度数为,计算的值为,下列计算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.下列分式是最简分式的是( )
A. B. C. D.
2.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为( )
A.31cm B.41cm C.51cm D.61cm
3.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )
A.2πcm B.4πcm C.6πcm D.8πcm
4.如图,已知,,则的度数为( )
A. B. C. D.
5.计算的值为( )
A. B.-4 C. D.-2
6.(2016四川省甘孜州)如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径的长为( )
A.π B.2π C.4π D.8π
7.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )
A.(a+b)(a﹣b)=a2﹣b2 B.(a﹣b)2=a2﹣2ab+b2
C.(a+b)2=a2+2ab+b2 D.(a+b)2=(a﹣b)2+4ab
8.在一个口袋中有4个完全相同的小球,把它们分别标号为 1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为( )
A. B. C. D.
9.下列计算正确的是( )
A.a2+a2=a4 B.a5•a2=a7 C.(a2)3=a5 D.2a2﹣a2=2
10.如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC的大小为( )
A.15° B.35° C.25° D.45°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,点D是边AB上的动点,将△ACD沿CD所在的直线折叠至△CDA的位置,CA'交AB于点E.若△A'ED为直角三角形,则AD的长为_____.
12.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2017的值为____.
13.如图,直线交于点,,与轴负半轴,轴正半轴分别交于点,,,的延长线相交于点,则的值是_________.
14.已知关于x的二次函数y=x2-2x-2,当a≤x≤a+2时,函数有最大值1,则a的值为________.
15.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.
16.如图,点A在反比例函数y=(x>0)的图像上,过点A作AD⊥y轴于点D,延长AD至点C,使CD=2AD,过点A作AB⊥x轴于点B,连结BC交y轴于点E,若△ABC的面积为6,则k的值为________.
三、解答题(共8题,共72分)
17.(8分)如图,已知二次函数的图象与轴交于,两点在左侧),与轴交于点,顶点为.
(1)当时,求四边形的面积;
(2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点,使,求点的坐标;
(3)如图2,将(1)中抛物线沿直线向斜上方向平移个单位时,点为线段上一动点,轴交新抛物线于点,延长至,且,若的外角平分线交点在新抛物线上,求点坐标.
18.(8分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想
图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
19.(8分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.
求与之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
20.(8分)已知线段a及如图形状的图案.
(1)用直尺和圆规作出图中的图案,要求所作图案中圆的半径为a(保留作图痕迹)
(2)当a=6时,求图案中阴影部分正六边形的面积.
21.(8分)如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.求一次函数的表达式;若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.
22.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
23.(12分)如图,抛物线与x轴交于A,B,与y轴交于点C(0,2),直线经过点A,C.
(1)求抛物线的解析式;
(2)点P为直线AC上方抛物线上一动点;
①连接PO,交AC于点E,求的最大值;
②过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使△PFC中的一个角等于∠CAB的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.
24.已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0)把二次函数C1的表达式化成y=a(x﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C1的图象经过点A(﹣3,1).
①求a的值;
②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
解:A.,故本选项错误;
B.,故本选项错误;
C.,不能约分,故本选项正确;
D.,故本选项错误.
故选C.
点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.
2、C
【解析】
∵DG是AB边的垂直平分线,
∴GA=GB,
△AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,
∴△ABC的周长=AC+BC+AB=51cm,
故选C.
3、B
【解析】
首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB可求,根据弧长公式即可求出劣弧AB的长.
【详解】
解:如图,连接OC,AO,
∵大圆的一条弦AB与小圆相切,
∴OC⊥AB,
∵OA=6,OC=3,
∴OA=2OC,
∴∠A=30°,
∴∠AOC=60°,
∴∠AOB=120°,
∴劣弧AB的长= =4π,
故选B.
【点睛】
本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.
4、B
【解析】
分析:根据∠AOC和∠BOC的度数得出∠AOB的度数,从而得出答案.
详解:∵∠AOC=70°, ∠BOC=30°, ∴∠AOB=70°-30°=40°,
∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故选B.
点睛:本题主要考查的是角度的计算问题,属于基础题型.理解各角之间的关系是解题的关键.
5、C
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
原式=-3=-2,
故选C.
【点睛】
本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
6、B
【解析】
试题分析:∵每个小正方形的边长都为1,∴OA=4,∵将△AOB绕点O顺时针旋转90°得到△A′OB′,∴∠AOA′=90°,∴A点运动的路径的长为:=2π.故选B.
考点:弧长的计算;旋转的性质.
7、B
【解析】
根据图形确定出图1与图2中阴影部分的面积,由此即可解答.
【详解】
∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;
∴(a﹣b)2=a2﹣2ab+b2,
故选B.
【点睛】
本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.
8、C
【解析】
列举出所有情况,看两次摸出的小球的标号的和等于6的情况数占总情况数的多少即可.
解:
共16种情况,和为6的情况数有3种,所以概率为.
故选C.
9、B
【解析】
根据整式的加减乘除乘方运算法则逐一运算即可。
【详解】
A. ,故A选项错误。
B. ,故B选项正确。
C.,故C选项错误。
D. ,故D选项错误。
故答案选B.
【点睛】
本题考查整式加减乘除运算法则,只需熟记法则与公式即可。
10、A
【解析】
根据等腰三角形的性质以及三角形内角和定理可得∠A =50°,再根据平行线的性质可得∠ACD=∠A=50°,由圆周角定理可行∠D=∠A=50°,再根据三角形内角和定理即可求得∠DBC的度数.
【详解】
∵AB=AC,
∴∠ABC=∠ACB=65°,
∴∠A=180°-∠ABC-∠ACB=50°,
∵DC//AB,
∴∠ACD=∠A=50°,
又∵∠D=∠A=50°,
∴∠DBC=180°-∠D -∠BCD=180°-50°-(65°+50°)=15°,
故选A.
【点睛】
本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、3﹣或1
【解析】
分两种情况:情况一:如图一所示,当∠A'DE=90°时;
情况二:如图二所示,当∠A'ED=90°时.
【详解】
解:如图,当∠A'DE=90°时,△A'ED为直角三角形,
∵∠A'=∠A=30°,
∴∠A'ED=60°=∠BEC=∠B,
∴△BEC是等边三角形,
∴BE=BC=1,
又∵Rt△ABC中,AB=1BC=4,
∴AE=1,
设AD=A'D=x,则DE=1﹣x,
∵Rt△A'DE中,A'D=DE,
∴x=(1﹣x),
解得x=3﹣,
即AD的长为3﹣;
如图,当∠A'ED=90°时,△A'ED为直角三角形,
此时∠BEC=90°,∠B=60°,
∴∠BCE=30°,
∴BE=BC=1,
又∵Rt△ABC中,AB=1BC=4,
∴AE=4﹣1=3,
∴DE=3﹣x,
设AD=A'D=x,则
Rt△A'DE中,A'D=1DE,即x=1(3﹣x),
解得x=1,
即AD的长为1;
综上所述,即AD的长为3﹣或1.
故答案为3﹣或1.
【点睛】
本题考查了翻折变换,勾股定理,等腰直角三角形的判定和性质等知识,添加辅助线,构造直角三角形,学会运用分类讨论是解题的关键.
12、1
【解析】
把点(m,0)代入y=x2﹣x﹣1,求出m2﹣m=1,代入即可求出答案.
【详解】
∵二次函数y=x2﹣x﹣1的图象与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2017=1+2017=1.
故答案为:1.
【点睛】
本题考查了抛物线与x轴的交点问题,求代数式的值的应用,解答此题的关键是求出m2﹣m=1,难度适中.
13、
【解析】
连接,根据可得,并且根据圆的半径相等可得△OAD、△OBE都是等腰三角形,由三角形的内角和,可得∠C=45°,则有是等腰直角三角形,可得
即可求求解.
【详解】
解:如图示,连接,
∵,
∴,
∵,,
∴,,
∴,
∴,
∵是直径,
∴,
∴是等腰直角三角形,
∴.
【点睛】
本题考查圆的性质和直角三角形的性质,能够根据圆性质得出是等腰直角三角形是解题的关键.
14、-1或1
【解析】
利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+2时函数有最大值1,即可得出关于a的一元一次方程,解之即可得出结论.
【详解】
解:当y=1时,x2-2x-2=1,
解得:x1=-1,x2=3,
∵当a≤x≤a+2时,函数有最大值1,
∴a=-1或a+2=3,即a=1.
故答案为-1或1.
【点睛】
本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.
15、
【解析】
根据概率的公式进行计算即可.
【详解】
从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.
故答案为:.
【点睛】
考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
16、1
【解析】
连结BD,利用三角形面积公式得到S△ADB=S△ABC=2,则S矩形OBAD=2S△ADB=1,于是可根据反比例函数的比例系数k的几何意义得到k的值.
【详解】
连结BD,如图,
∵DC=2AD,
∴S△ADB=S△BDC=S△BAC=×6=2,
∵AD⊥y轴于点D,AB⊥x轴,
∴四边形OBAD为矩形,
∴S矩形OBAD=2S△ADB=2×2=1,
∴k=1.
故答案为:1.
【点睛】
本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
三、解答题(共8题,共72分)
17、(1)4;(2),;(3).
【解析】
(1)过点D作DE⊥x轴于点E,求出二次函数的顶点D的坐标,然后求出A、B、C的坐标,然后根据即可得出结论;
(2)设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,证出,列表比例式,并找出关于t的方程即可得出结论;
(3)判断点D在直线上,根据勾股定理求出DH,即可求出平移后的二次函数解析式,设点,,过点作于,于,轴于,根据勾股定理求出AG,联立方程即可求出m、n,从而求出结论.
【详解】
解:(1)过点D作DE⊥x轴于点E
当时,得到,
顶点,
∴DE=1
由,得,;
令,得;
,,,
,OC=3
.
(2)如图1,设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,
由翻折得:,
;
,
,
轴,,
,
,
由勾股定理得:,
,
,
,
,,
,
解得:(不符合题意,舍去),;
,.
(3)原抛物线的顶点在直线上,
直线交轴于点,
如图2,过点作轴于,
;
由题意,平移后的新抛物线顶点为,解析式为,
设点,,则,,,
过点作于,于,轴于,
,
,
、分别平分,,
,
点在抛物线上,
,
根据题意得:
解得:
【点睛】
此题考查的是二次函数的综合大题,难度较大,掌握二次函数平移规律、二次函数的图象及性质、相似三角形的判定及性质和勾股定理是解决此题的关键.
18、 (1)PM=PN, PM⊥PN;(2)△PMN是等腰直角三角形,理由详见解析;(3).
【解析】
(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;
(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;
(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.
方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.
【详解】
解:(1)∵点P,N是BC,CD的中点,
∴PN∥BD,PN=BD,
∵点P,M是CD,DE的中点,
∴PM∥CE,PM=CE,
∵AB=AC,AD=AE,
∴BD=CE,
∴PM=PN,
∵PN∥BD,
∴∠DPN=∠ADC,
∵PM∥CE,
∴∠DPM=∠DCA,
∵∠BAC=90°,
∴∠ADC+∠ACD=90°,
∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,
∴PM⊥PN,
故答案为:PM=PN,PM⊥PN,
(2)由旋转知,∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,BD=CE,
同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,
∴PM=PN,
∴△PMN是等腰三角形,
同(1)的方法得,PM∥CE,
∴∠DPM=∠DCE,
同(1)的方法得,PN∥BD,
∴∠PNC=∠DBC,
∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC
=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC
=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
∵∠BAC=90°,
∴∠ACB+∠ABC=90°,
∴∠MPN=90°,
∴△PMN是等腰直角三角形,
(3)方法1、如图2,同(2)的方法得,△PMN是等腰直角三角形,
∴MN最大时,△PMN的面积最大,
∴DE∥BC且DE在顶点A上面,
∴MN最大=AM+AN,
连接AM,AN,
在△ADE中,AD=AE=4,∠DAE=90°,
∴AM=2,
在Rt△ABC中,AB=AC=10,AN=5,
∴MN最大=2+5=7,
∴S△PMN最大=PM2=×MN2=×(7)2=.
方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,
∴PM最大时,△PMN面积最大,
∴点D在BA的延长线上,
∴BD=AB+AD=14,
∴PM=7,
∴S△PMN最大=PM2=×72=
【点睛】
本题考查旋转中的三角形,关键在于对三角形的所有知识点熟练掌握.
19、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.
【解析】
(1)可用待定系数法来确定y与x之间的函数关系式;
(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;
(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.
【详解】
(1)由题意得: .
故y与x之间的函数关系式为:y=-10x+700,
(2)由题意,得
-10x+700≥240,
解得x≤46,
设利润为w=(x-30)•y=(x-30)(-10x+700),
w=-10x2+1000x-21000=-10(x-50)2+4000,
∵-10<0,
∴x<50时,w随x的增大而增大,
∴x=46时,w大=-10(46-50)2+4000=3840,
答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;
(3)w-150=-10x2+1000x-21000-150=3600,
-10(x-50)2=-250,
x-50=±5,
x1=55,x2=45,
如图所示,由图象得:
当45≤x≤55时,捐款后每天剩余利润不低于3600元.
【点睛】
此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.
20、(1)如图所示见解析,(2)当半径为6时,该正六边形的面积为
【解析】
试题分析:
(1)先画一半径为a的圆,再作所画圆的六等分点,如图所示,连接所得六等分点,作出两个等边三角形即可;
(2)如下图,连接OA、OB、OC、OD,作OE⊥AB于点E,由已知条件先求出AB和OE的长,再求出CD的长,即可求得△OCD的面积,这样即可由S阴影=6S△OCD求出阴影部分的面积了.
试题解析:
(1)所作图形如下图所示:
(2)如下图,连接OA、OB、OC、OD,作OE⊥AB于点E,则由题意可得:OA=OB=6,∠AOB=120°,∠OEB=90°,AE=BE,△BOC,△AOD都是等腰三角形,△OCD的三边三角形,
∴∠ABO=30°,BC=OC=CD=AD,
∴BE=OB·cos30°=,OE=3,
∴AB=,
∴CD=,
∴S△OCD=,
∴S阴影=6S△OCD=.
21、(1);(2)1或9.
【解析】
试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k、b的值,即可得一次函数的解析式;(2)直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=x+5-m,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m的值.
试题解析:
(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得,
解得,
所以一次函数的表达式为y=x+5.
(2)将直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=x+5-m.由得, x2+(5-m)x+8=0.Δ=(5-m)2-4××8=0,
解得m=1或9.
点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.
22、(1)若某天该商品每件降价3元,当天可获利1692元;
(2)2x;50﹣x.
(3)每件商品降价1元时,商场日盈利可达到2000元.
【解析】
(1)根据“盈利=单件利润×销售数量”即可得出结论;
(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;
(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.
【详解】
(1)当天盈利:(50-3)×(30+2×3)=1692(元).
答:若某天该商品每件降价3元,当天可获利1692元.
(2)∵每件商品每降价1元,商场平均每天可多售出2件,
∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.
故答案为2x;50-x.
(3)根据题意,得:(50-x)×(30+2x)=2000,
整理,得:x2-35x+10=0,
解得:x1=10,x2=1,
∵商城要尽快减少库存,
∴x=1.
答:每件商品降价1元时,商场日盈利可达到2000元.
【点睛】
考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).
23、(1);(2)①有最大值1;②(2,3)或(,)
【解析】
(1)根据自变量与函数值的对应关系,可得A,C点坐标,根据代定系数法,可得函数解析式;
(2)①根据相似三角形的判定与性质,可得,根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;
②根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点D,求得D(,0),得到DA=DC=DB=,过P作x轴的平行线交y轴于R,交AC于G,情况一:如图,∠PCF=2∠BAC=∠DGC+∠CDG,情况二,∠FPC=2∠BAC,解直角三角形即可得到结论.
【详解】
(1)当x=0时,y=2,即C(0,2),
当y=0时,x=4,即A(4,0),
将A,C点坐标代入函数解析式,得
,
解得,
抛物线的解析是为;
(2)过点P向x轴做垂线,交直线AC于点M,交x轴于点N
,
∵直线PN∥y轴,
∴△PEM~△OEC,
∴
把x=0代入y=-x+2,得y=2,即OC=2,
设点P(x,-x2+x+2),则点M(x,-x+2),
∴PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,
∴=,
∵0<x<4,∴当x=2时,=有最大值1.
②∵A(4,0),B(-1,0),C(0,2),
∴AC=2,BC=,AB=5,
∴AC2+BC2=AB2,
∴△ABC是以∠ACB为直角的直角三角形,取AB的中点D,
∴D(,0),
∴DA=DC=DB=,
∴∠CDO=2∠BAC,
∴tan∠CDO=tan(2∠BAC)=,
过P作x轴的平行线交y轴于R,交AC的延长线于G,
情况一:如图
,
∴∠PCF=2∠BAC=∠PGC+∠CPG,
∴∠CPG=∠BAC,
∴tan∠CPG=tan∠BAC=,
即,
令P(a,-a2+a+2),
∴PR=a,RC=-a2+a,
∴,
∴a1=0(舍去),a2=2,
∴xP=2,-a2+a+2=3,P(2,3)
情况二,∴∠FPC=2∠BAC,
∴tan∠FPC=,
设FC=4k,
∴PF=3k,PC=5k,
∵tan∠PGC=,
∴FG=6k,
∴CG=2k,PG=3k,
∴RC=k,RG=k,PR=3k-k=k,
∴,
∴a1=0(舍去),a2=,
xP=,-a2+a+2=,即P(,),
综上所述:P点坐标是(2,3)或(,).
【点睛】
本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出,又利用了二次函数的性质;解(3)的关键是利用解直角三角形,要分类讨论,以防遗漏.
24、 (1)y1=a(x+1)2﹣1,顶点为(﹣1,﹣1);(2)①;②k的取值范围是≤k≤或k=﹣1.
【解析】
(1)化成顶点式即可求得;
(2)①把点A(﹣3,1)代入二次函数C1:y1=ax2+2ax+a﹣1即可求得a的值;
②根据对称的性质得出B的坐标,然后分两种情况讨论即可求得;
【详解】
(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,
∴顶点为(﹣1,﹣1);
(2)①∵二次函数C1的图象经过点A(﹣3,1),
∴a(﹣3+1)2﹣1=1,
∴a=;
②∵A(﹣3,1),对称轴为直线x=﹣1,
∴B(1,1),
当k>0时,
二次函数C2:y2=kx2+kx(k≠0)的图象经过A(﹣3,1)时,1=9k﹣3k,解得k=,
二次函数C2:y2=kx2+kx(k≠0)的图象经过B(1,1)时,1=k+k,解得k=,
∴≤k≤,
当k<0时,∵二次函数C2:y2=kx2+kx=k(x+)2﹣k,
∴﹣k=1,
∴k=﹣1,
综上,二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,k的取值范围是≤k≤或k=﹣1.
【点睛】
本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键.
相关试卷
这是一份黑龙江省伊春市重点达标名校2021-2022学年中考数学适应性模拟试题含解析,共18页。试卷主要包含了在平面直角坐标系中,已知点A,计算结果是等内容,欢迎下载使用。
这是一份2022年黑龙江省伊春市重点达标名校中考数学五模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,若=1,则符合条件的m有,-4的相反数是,平面直角坐标系中,若点A等内容,欢迎下载使用。
这是一份2022年黑龙江省杜尔伯特县重点达标名校中考四模数学试题含解析,共20页。试卷主要包含了估计的值在,下列实数中,为无理数的是等内容,欢迎下载使用。