黑龙江省绥化市2021-2022学年毕业升学考试模拟卷数学卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为( )
A.7 B.8 C.9 D.10
2.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是( )
A.30° B.15° C.18° D.20°
3.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为( )
A. B.π C. D.3
4.已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a一定不经过( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
5.(2011•雅安)点P关于x轴对称点为P1(3,4),则点P的坐标为( )
A.(3,﹣4) B.(﹣3,﹣4)
C.(﹣4,﹣3) D.(﹣3,4)
6.直线AB、CD相交于点O,射线OM平分∠AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是( )
A.相离 B.相切 C.相交 D.不确定
7.如图是一个正方体展开图,把展开图折叠成正方体后,“爱”字一面相对面上的字是( )
A.美 B.丽 C.泗 D.阳
8.抛物线的顶点坐标是( )
A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)
9.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是( )
A.4 B.4.5 C.5 D.5.5
10.已知正多边形的一个外角为36°,则该正多边形的边数为( ).
A.12 B.10 C.8 D.6
二、填空题(本大题共6个小题,每小题3分,共18分)
11.对于函数,若x>2,则y______3(填“>”或“<”).
12.新田为实现全县“脱贫摘帽”,2018年2月已统筹整合涉农资金235000000元,撬动800000000元金融资本参与全县脱贫攻坚工作,请将235000000用科学记数法表示为___.
13.已知⊙O1、⊙O2的半径分别为2和5,圆心距为d,若⊙O1与⊙O2相交,那么d的取值范围是_________.
14.函数的定义域是________.
15.如果等腰三角形的两内角度数相差45°,那么它的顶角度数为_____.
16.如图,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,点D、E分别为AM、AB上的动点,则BD+DE的最小值是_____.
三、解答题(共8题,共72分)
17.(8分)某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(1)该商场服装营业员的人数为 ,图①中m的值为 ;
(2)求统计的这组销售额数据的平均数、众数和中位数.
18.(8分)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数y=(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P在y轴上,且△OPA的面积与四边形OACB的面积相等,求点P的坐标.
19.(8分)如图,在等边中,,点D是线段BC上的一动点,连接AD,过点D作,垂足为D,交射线AC与点设BD为xcm,CE为ycm.
小聪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小聪的探究过程,请补充完整:
通过取点、画图、测量,得到了x与y的几组值,如下表:
0
1
2
3
4
5
___
0
0
说明:补全表格上相关数值保留一位小数
建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
结合画出的函数图象,解决问题:当线段BD是线段CE长的2倍时,BD的长度约为_____cm.
20.(8分)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.
(1)直接写出点E的坐标(用含t的代数式表示): ;
(2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;
(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.
21.(8分)分式化简:(a-)÷
22.(10分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.
(1)求甲组加工零件的数量y与时间x之间的函数关系式.
(2)求乙组加工零件总量a的值.
23.(12分)如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上.
(I)AC的长等于_____.
(II)若AC边与网格线的交点为P,请找出两条过点P的直线来三等分△ABC的面积.请在如图所示的网格中,用无刻度的直尺,画出这两条直线,并简要说明这两条直线的位置是如何找到的_____(不要求证明).
24.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A市投资“改水工程”的年平均增长率;从2008年到2010年,A市三年共投资“改水工程”多少万元?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
根据三视图知,该几何体中小正方体的分布情况如下图所示:
所以组成这个几何体的小正方体个数最多为9个,
故选C.
【点睛】
考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查.
2、C
【解析】
∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.
【详解】
∵正五边形的内角的度数是×(5-2)×180°=108°,正方形的内角是90°,
∴∠1=108°-90°=18°.故选C
【点睛】
本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.
3、B
【解析】
∵四边形AECD是平行四边形,
∴AE=CD,
∵AB=BE=CD=3,
∴AB=BE=AE,
∴△ABE是等边三角形,
∴∠B=60°,
∴的弧长=.
故选B.
4、D
【解析】
根据直线y=ax+b(a≠0)经过第一,二,四象限,可以判断a、b的正负,从而可以判断直线y=bx-a经过哪几个象限,不经过哪个象限,本题得以解决.
【详解】
∵直线y=ax+b(a≠0)经过第一,二,四象限,
∴a<0,b>0,
∴直线y=bx-a经过第一、二、三象限,不经过第四象限,
故选D.
【点睛】
本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
5、A
【解析】
∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,
∴点P的坐标为(3,﹣4).
故选A.
6、A
【解析】
根据角平分线的性质和点与直线的位置关系解答即可.
【详解】
解:如图所示;
∵OM平分∠AOD,以点P为圆心的圆与直线AB相离,
∴以点P为圆心的圆与直线CD相离,
故选:A.
【点睛】
此题考查直线与圆的位置关系,关键是根据角平分线的性质解答.
7、D
【解析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”字一面相对面上的字是“阳”;
故本题答案为:D.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形是解题的关键.
8、A
【解析】
已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.
【详解】
解:y=(x-2)2+3是抛物线的顶点式方程,
根据顶点式的坐标特点可知,顶点坐标为(2,3).
故选A.
【点睛】
此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.
9、B
【解析】
试题分析:根据平行线分线段成比例可得,然后根据AC=1,CE=6,BD=3,可代入求解DF=1.2.
故选B
考点:平行线分线段成比例
10、B
【解析】
利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.
【详解】
解:360°÷36°=10,所以这个正多边形是正十边形.
故选:B.
【点睛】
本题主要考查了多边形的外角和定理.是需要识记的内容.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、<
【解析】
根据反比例函数的性质即可解答.
【详解】
当x=2时,,
∵k=6时,
∴y随x的增大而减小
∴x>2时,y<3
故答案为:<
【点睛】
此题主要考查了反比例函数的性质,解题的关键在于利用反比例函数图象上点的坐标特点判断函数值的取值范围 .
12、2.35×1
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将235000000用科学记数法表示为:2.35×1.
故答案为:2.35×1.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
13、3
若两圆的半径分别为R和r,且R≥r,圆心距为d:相交,则R-r
∵⊙O1和⊙O2的半径分别为2和5,且两圆的位置关系为相交,
∴圆心距O1O2的取值范围为5-2
本题考查的知识点是圆与圆的位置关系,解题的关键是熟练的掌握圆与圆的位置关系.
14、x≥-1
【解析】
分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
详解:根据题意得:x+1≥0,解得:x≥﹣1.
故答案为x≥﹣1.
点睛:考查了函数的定义域,函数的定义域一般从三个方面考虑:
(1)当函数表达式是整式时,定义域可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(1)当函数表达式是二次根式时,被开方数非负.
15、90°或30°.
【解析】
分两种情况讨论求解:顶角比底角大45°;顶角比底角小45°.
【详解】
设顶角为x度,则
当底角为x°﹣45°时,2(x°﹣45°)+x°=180°,
解得x=90°,
当底角为x°+45°时,2(x°+45°)+x°=180°,
解得x=30°,
∴顶角度数为90°或30°.
故答案为:90°或30°.
【点睛】
本题考查了等腰三角形的两个底角相等即分类讨论的数学思想,解答本题的关键是分顶角比底角大45°或顶角比底角小45°两种情况进行计算.
16、8
【解析】
试题分析:过B 点作于点,与交于点,根据三角形两边之和小于第三边,可知的最小值是线的长,根据勾股定理列出方程组即可求解.
过B 点作于点,与交于点,
设AF=x,,
,
,(负值舍去).
故BD+DE的值是8
故答案为8
考点:轴对称-最短路线问题.
三、解答题(共8题,共72分)
17、(1)25;28;(2)平均数:1.2;众数:3;中位数:1.
【解析】
(1)观察统计图可得,该商场服装部营业员人数为2+5+7+8+3=25人,m%=1-32%-12%-8%-20%=28%,即m=28;
(2)计算出所有营业员的销售总额除以营业员的总人数即可的平均数;观察统计图,根据众数、中位数的定义即可得答案.
【详解】
解:(1)根据条形图2+5+7+8+3=25(人),
m=100-20-32-12-8=28;
故答案为:25;28;
(2)观察条形统计图,
∵
∴这组数据的平均数是1.2.
∵在这组数据中,3 出现了8次,出现的次数最多,
∴这组数据的众数是3.
∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是1,
∴这组数据的中位数是1.
【点睛】
此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
18、 (1) 反比例函数的表达式为y=(x>0);(2) 点P的坐标为(0,4)或(0,﹣4)
【解析】
(1)根据点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上求出a、b的值,得出A、B两点的坐标,再运用待定系数法解答即可;
(2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF,设点P(0,m),根据反比例函数的几何意义解答即可.
【详解】
(1)∵点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上,
∴﹣a+3=2,b=﹣×4+3,
∴a=2,b=1,
∴点A的坐标为(2,2),点B的坐标为(4,1),
又∵点A(2,2)在反比例函数y=的图象上,
∴k=2×2=4,
∴反比例函数的表达式为y=(x>0);
(2)延长CA交y轴于点E,延长CB交x轴于点F,
∵AC∥x轴,BC∥y轴,
则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)
∴四边形OECF为矩形,且CE=4,CF=2,
∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF
=2×4﹣×2×2﹣×4×1
=4,
设点P的坐标为(0,m),
则S△OAP=×2•|m|=4,
∴m=±4,
∴点P的坐标为(0,4)或(0,﹣4).
【点睛】
此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.
19、(1)1.1;(2)见解析;(3).
【解析】
(1)(2)需要认真按题目要求测量,描点作图;
(3)线段BD是线段CE长的2倍的条件可以转化为一次函数图象,通过数形结合解决问题.
【详解】
根据题意测量约
故应填:
根据题意画图:
当线段BD是线段CE长的2倍时,得到图象,该图象与中图象的交点即为所求情况,测量得BD长约.
故答案为(1)1.1;(2)见解析;(3)1.7.
【点睛】
本题考查函数作图和函数图象实际意义的理解,在中,考查学生由数量关系得到函数关系的转化思想.
20、 (1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.
【解析】
(1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,
由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,
∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,
又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,
在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),
∴CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),
(2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,
∴AD=t(4﹣t),
∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,
∵EG⊥x轴、FP⊥x轴,且EG=FP,
∴四边形EGPF为矩形,∴EF⊥BD,EF=PG,
∴S四边形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,
∴当t=2时,S有最小值是16;
(3)①假设∠FBD为直角,则点F在直线BC上,
∵PF=OP<AB,
∴点F不可能在BC上,即∠FBD不可能为直角;
②假设∠FDB为直角,则点D在EF上,
∵点D在矩形的对角线PE上,
∴点D不可能在EF上,即∠FDB不可能为直角;
③假设∠BFD为直角且FB=FD,则∠FBD=∠FDB=45°,
如图2,作FH⊥BD于点H,
则FH=PA,即4﹣t=6﹣t,方程无解,
∴假设不成立,即△BDF不可能是等腰直角三角形.
21、a-b
【解析】
利用分式的基本性质化简即可.
【详解】
===.
【点睛】
此题考查了分式的化简,用到的知识点是分式的基本性质、完全平方公式.
22、(1)y=60x;(2)300
【解析】
(1)由题图可知,甲组的y是x的正比例函数.
设甲组加工的零件数量y与时间x的函数关系式为y=kx.
根据题意,得6k=360,
解得k=60.
所以,甲组加工的零件数量y与时间x之间的关系式为y=60x.
(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍.
所以,解得a=300.
23、 作a∥b∥c∥d,可得交点P与P′
【解析】
(1)根据勾股定理计算即可;
(2)利用平行线等分线段定理即可解决问题.
【详解】
(I)AC==,
故答案为:;
(II)如图直线l1,直线l2即为所求;
理由:∵a∥b∥c∥d,且a与b,b与c,c与d之间的距离相等,
∴CP=PP′=P′A,
∴S△BCP=S△ABP′=S△ABC.
故答案为作a∥b∥c∥d,可得交点P与P′.
【点睛】
本题考查作图-应用与设计,勾股定理,平行线等分线段定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
24、 (1) 40%;(2) 2616.
【解析】
(1)设A市投资“改水工程”的年平均增长率是x.根据:2008年,A市投入600万元用于“改水工程”,2010年该市计划投资“改水工程”1176万元,列方程求解;
(2)根据(1)中求得的增长率,分别求得2009年和2010年的投资,最后求和即可.
【详解】
解:(1)设A市投资“改水工程”年平均增长率是x,则
.解之,得或(不合题意,舍去).
所以,A市投资“改水工程”年平均增长率为40%.
(2)600+600×1.4+1176=2616(万元).
A市三年共投资“改水工程”2616万元.
2021-2022学年宁夏中学宁县毕业升学考试模拟卷数学卷含解析: 这是一份2021-2022学年宁夏中学宁县毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了一元二次方程的根的情况是,八边形的内角和为,有以下图形等内容,欢迎下载使用。
2021-2022学年黑龙江省鹤岗市绥滨县毕业升学考试模拟卷数学卷含解析: 这是一份2021-2022学年黑龙江省鹤岗市绥滨县毕业升学考试模拟卷数学卷含解析,共21页。试卷主要包含了二次函数的对称轴是等内容,欢迎下载使用。
2021-2022学年海南东坡校毕业升学考试模拟卷数学卷含解析: 这是一份2021-2022学年海南东坡校毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,如图,能判定EB∥AC的条件是,计算-5x2-3x2的结果是,若,则的值为,化简的结果是,估计的值在等内容,欢迎下载使用。