|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖南省长沙市西雅中学2022年中考联考数学试题含解析
    立即下载
    加入资料篮
    湖南省长沙市西雅中学2022年中考联考数学试题含解析01
    湖南省长沙市西雅中学2022年中考联考数学试题含解析02
    湖南省长沙市西雅中学2022年中考联考数学试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省长沙市西雅中学2022年中考联考数学试题含解析

    展开
    这是一份湖南省长沙市西雅中学2022年中考联考数学试题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,的值是,有下列四个命题等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是(  )
    A.将抛物线c沿x轴向右平移个单位得到抛物线c′ B.将抛物线c沿x轴向右平移4个单位得到抛物线c′
    C.将抛物线c沿x轴向右平移个单位得到抛物线c′ D.将抛物线c沿x轴向右平移6个单位得到抛物线c′
    2.如图,⊙O的半径OC与弦AB交于点D,连结OA,AC,CB,BO,则下列条件中,无法判断四边形OACB为菱形的是( )

    A.∠DAC=∠DBC=30° B.OA∥BC,OB∥AC C.AB与OC互相垂直 D.AB与OC互相平分
    3.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是(  )

    A.①②④ B.①②⑤ C.②③④ D.③④⑤
    4.如图,矩形中,,,以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点,则的长为( )

    A.3 B.4 C. D.5
    5.若数a,b在数轴上的位置如图示,则(  )

    A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>0
    6.的值是
    A. B. C. D.
    7.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为( )

    A.1 B. C. D.
    8.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有(  )
    A.1个 B.2个 C.3个 D.4个
    9.如图,BD是∠ABC的角平分线,DC∥AB,下列说法正确的是(  )

    A.BC=CD B.AD∥BC
    C.AD=BC D.点A与点C关于BD对称
    10.给出下列各数式,① ② ③ ④ 计算结果为负数的有(  )
    A.1个 B.2个 C.3个 D.4个
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,已知 OP 平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是_________.

    12.如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点.若DE=1,则DF的长为________.

    13.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.
    14.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.

    15.不等式的解集是________________
    16.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:






    1′05″33
    1′04″26
    1′04″26
    1′07″29
    s2
    1.1
    1.1
    1.3
    1.6
    如果选拔一名学生去参赛,应派_________去.
    三、解答题(共8题,共72分)
    17.(8分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.
    (1)求证:CF是⊙O的切线;
    (2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)

    18.(8分)计算:+-2〡+6tan30°
    19.(8分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?
    20.(8分)如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0
    (1)求点A、B、D的坐标;
    (2)若△AOD与△BPC相似,求a的值;
    (3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.
    21.(8分)服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.
    (1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?
    (2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0 22.(10分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.求证:∠C=90°;当BC=3,sinA=时,求AF的长.

    23.(12分)先化简,再求值:,其中x是从-1、0、1、2中选取一个合适的数.
    24.如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为1.
    (1)求反比例函数的解析式;
    (2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    ∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,
    ∴抛物线对称轴为x=﹣1.
    ∴抛物线与y轴的交点为A(0,﹣3).
    则与A点以对称轴对称的点是B(2,﹣3).
    若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.
    则B点平移后坐标应为(4,﹣3),
    因此将抛物线C向右平移4个单位.
    故选B.
    2、C
    【解析】
    (1)∵∠DAC=∠DBC=30°,
    ∴∠AOC=∠BOC=60°,
    又∵OA=OC=OB,
    ∴△AOC和△OBC都是等边三角形,
    ∴OA=AC=OC=BC=OB,
    ∴四边形OACB是菱形;即A选项中的条件可以判定四边形OACB是菱形;
    (2)∵OA∥BC,OB∥AC,
    ∴四边形OACB是平行四边形,
    又∵OA=OB,
    ∴四边形OACB是菱形,即B选项中的条件可以判定四边形OACB是菱形;
    (3)由OC和AB互相垂直不能证明到四边形OACB是菱形,即C选项中的条件不能判定四边形OACB是菱形;
    (4)∵AB与OC互相平分,
    ∴四边形OACB是平行四边形,
    又∵OA=OB,
    ∴四边形OACB是菱形,即由D选项中的条件能够判定四边形OACB是菱形.
    故选C.
    3、A
    【解析】
    由抛物线的开口方向判断a与2的关系,由抛物线与y轴的交点判断c与2的关系,然后根据对称轴判定b与2的关系以及2a+b=2;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>2.
    【详解】
    ①∵对称轴在y轴右侧,
    ∴a、b异号,
    ∴ab<2,故正确;
    ②∵对称轴
    ∴2a+b=2;故正确;
    ③∵2a+b=2,
    ∴b=﹣2a,
    ∵当x=﹣1时,y=a﹣b+c<2,
    ∴a﹣(﹣2a)+c=3a+c<2,故错误;
    ④根据图示知,当m=1时,有最大值;
    当m≠1时,有am2+bm+c≤a+b+c,
    所以a+b≥m(am+b)(m为实数).
    故正确.
    ⑤如图,当﹣1<x<3时,y不只是大于2.
    故错误.
    故选A.
    【点睛】
    本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定
    抛物线的开口方向,当a>2时,抛物线向上开口;当a<2时,抛物线向下开口;②一次项
    系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>2),对称轴在y轴
    左; 当a与b异号时(即ab<2),对称轴在y轴右.(简称:左同右异)③常数项c决定抛
    物线与y轴交点,抛物线与y轴交于(2,c).
    4、B
    【解析】
    连接DF,在中,利用勾股定理求出CF的长度,则EF的长度可求.
    【详解】
    连接DF,

    ∵四边形ABCD是矩形

    在中,



    故选:B.
    【点睛】
    本题主要考查勾股定理,掌握勾股定理的内容是解题的关键.
    5、D
    【解析】
    首先根据有理数a,b在数轴上的位置判断出a、b两数的符号,从而确定答案.
    【详解】
    由数轴可知:a<0<b,a<-1,0 所以,A.a+b<0,故原选项错误;
    B. ab<0,故原选项错误;
    C.a-b<0,故原选项错误;
    D.,正确.
    故选D.
    【点睛】
    本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a,b的大小关系.
    6、D
    【解析】
    根据特殊角三角函数值,可得答案.
    【详解】
    解:,
    故选:D.
    【点睛】
    本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
    7、C
    【解析】
    连接AE,OD,OE.

    ∵AB是直径, ∴∠AEB=90°.
    又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.
    ∵OA=OD.∴△AOD是等边三角形.∴∠A=60°.
    又∵点E为BC的中点,∠AED=90°,∴AB=AC.
    ∴△ABC是等边三角形,
    ∴△EDC是等边三角形,且边长是△ABC边长的一半2,高是.
    ∴∠BOE=∠EOD=60°,∴和弦BE围成的部分的面积=和弦DE围成的部分的面积.
    ∴阴影部分的面积=.故选C.
    8、D
    【解析】
    根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断.
    【详解】
    解:①对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;
    ②只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;
    ③正五边形的内角和为540°,则其内角为108°,而360°并不是108°的整数倍,不能进行平面镶嵌,故为假命题;
    ④在同一平面内,垂直于同一条直线的两条直线平行,故为假命题.
    故选:D.
    【点睛】
    本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.
    9、A
    【解析】
    由BD是∠ABC的角平分线,根据角平分线定义得到一对角∠ABD与∠CBD相等,然后由DC∥AB,根据两直线平行,得到一对内错角∠ABD与∠CDB相等,利用等量代换得到∠DBC=∠CDB,再根据等角对等边得到BC=CD,从而得到正确的选项.
    【详解】
    ∵BD是∠ABC的角平分线,
    ∴∠ABD=∠CBD,
    又∵DC∥AB,
    ∴∠ABD=∠CDB,
    ∴∠CBD=∠CDB,
    ∴BC=CD.
    故选A.
    【点睛】
    此题考查了等腰三角形的判定,以及平行线的性质.学生在做题时,若遇到两直线平行,往往要想到用两直线平行得同位角或内错角相等,借助转化的数学思想解决问题.这是一道较易的证明题,锻炼了学生的逻辑思维能力.
    10、B
    【解析】
    ∵①;②;③;④;
    ∴上述各式中计算结果为负数的有2个.
    故选B.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    由 OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半, 即可求得DM的长.
    【详解】
    ∵OP 平分∠AOB,∠AOB=60°,
    ∴∠AOP=∠COP=30°,
    ∵CP∥OA,
    ∴∠AOP=∠CPO,
    ∴∠COP=∠CPO,
    ∴OC=CP=2,
    ∵∠PCE=∠AOB=60°,PE⊥OB,
    ∴∠CPE=30°,



    ∵PD⊥OA,点M是OP的中点,

    故答案为:
    【点睛】
    此题考查了等腰三角形的性质与判定、含 30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,属于中考常见题型,求出 OP 的长是解题关键.
    12、1.1
    【解析】
    求出EC,根据菱形的性质得出AD∥BC,得出相似三角形,根据相似三角形的性质得出比例式,代入求出即可.
    【详解】
    ∵DE=1,DC=3,
    ∴EC=3-1=2,
    ∵四边形ABCD是菱形,
    ∴AD∥BC,
    ∴△DEF∽△CEB,
    ∴,
    ∴,
    ∴DF=1.1,
    故答案为1.1.
    【点睛】
    此题主要考查了相似三角形的判定与性质,解题关键是根据菱形的性质证明△DEF∽△CEB,然后根据相似三角形的性质可求解.
    13、
    【解析】
    根据概率的概念直接求得.
    【详解】
    解:4÷6=.
    故答案为:.
    【点睛】
    本题用到的知识点为:概率=所求情况数与总情况数之比.
    14、1
    【解析】
    首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.
    【详解】
    如图,连接BE,

    ∵四边形BCEK是正方形,
    ∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,
    ∴BF=CF,
    根据题意得:AC∥BK,
    ∴△ACO∽△BKO,
    ∴KO:CO=BK:AC=1:3,
    ∴KO:KF=1:1,
    ∴KO=OF=CF=BF,
    在Rt△PBF中,tan∠BOF==1,
    ∵∠AOD=∠BOF,
    ∴tan∠AOD=1.
    故答案为1
    【点睛】
    此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.
    15、
    【解析】
    首先去分母进而解出不等式即可.
    【详解】
    去分母得,1-2x>15
    移项得,-2x>15-1
    合并同类项得,-2x>14
    系数化为1,得x<-7.
    故答案为x<-7.
    【点睛】
    此题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.
    16、乙
    【解析】
    ∵丁〉甲乙=丙,
    ∴从乙和丙中选择一人参加比赛,
    ∵S 乙2<S 丙2,
    ∴选择乙参赛,
    故答案是:乙.

    三、解答题(共8题,共72分)
    17、(1)证明见解析;(2)9﹣3π
    【解析】
    试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.
    试题解析:(1)如图连接OD.
    ∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,
    ∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,
    在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,
    ∴CF⊥OD, ∴CF是⊙O的切线.
    (2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,
    ∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,
    ∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,
    ∵EB=6,∴OB=OD═OA=3, 在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,
    ∴AC=OA•tan60°=3, ∴S阴=2•S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.

    18、10 +
    【解析】
    根据实数的性质进行化简即可计算.
    【详解】
    原式=9-1+2-+6×
    =10-
    =10 +
    【点睛】
    此题主要考查实数的计算,解题的关键是熟知实数的性质.
    19、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.
    【解析】
    (1)设年平均增长率为x,根据“2015年投入资金×(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据“前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万”列不等式求解即可.
    【详解】
    (1)设该地投入异地安置资金的年平均增长率为x,根据题意,
    得:1280(1+x)2=1280+1600,
    解得:x=0.5或x=﹣2.25(舍),
    答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;
    (2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,
    得:1000×8×400+(a﹣1000)×5×400≥5000000,
    解得:a≥1900,
    答:今年该地至少有1900户享受到优先搬迁租房奖励.
    考点:一元二次方程的应用;一元一次不等式的应用.
    20、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值为.(3)当a=时,D、O、C、B四点共圆.
    【解析】
    【分析】(1)根据二次函数的图象与x轴相交,则y=0,得出A(a,0),B(3,0),与y轴相交,则x=0,得出D(0,3a).
    (2)根据(1)中A、B、D的坐标,得出抛物线对称轴x=,AO=a,OD=3a,代入求得顶点C(,-),从而得PB=3- =,PC=;再分情况讨论:①当△AOD∽△BPC时,根据相似三角形性质得, 解得:a= 3(舍去);
    ②△AOD∽△CPB,根据相似三角形性质得 ,解得:a1=3(舍),a2=;
    (3)能;连接BD,取BD中点M,根据已知得D、B、O在以BD为直径,M(,a)为圆心的圆上,若点C也在此圆上,则MC=MB,根据两点间的距离公式得一个关于a的方程,解之即可得出答案.
    【详解】(1)∵y=(x-a)(x-3)(0 ∴A(a,0),B(3,0),
    当x=0时,y=3a,
    ∴D(0,3a);
    (2)∵A(a,0),B(3,0),D(0,3a).∴对称轴x=,AO=a,OD=3a,
    当x= 时,y=- ,
    ∴C(,-),
    ∴PB=3-=,PC=,
    ①当△AOD∽△BPC时,
    ∴,
    即 ,  
    解得:a= 3(舍去);
    ②△AOD∽△CPB,
    ∴,
    即 ,
    解得:a1=3(舍),a2= .
    综上所述:a的值为;
    (3)能;连接BD,取BD中点M,

    ∵D、B、O三点共圆,且BD为直径,圆心为M(,a),
    若点C也在此圆上,
    ∴MC=MB,
    ∴ ,
    化简得:a4-14a2+45=0,
    ∴(a2-5)(a2-9)=0,
    ∴a2=5或a2=9,
    ∴a1=,a2=-,a3=3(舍),a4=-3(舍),
    ∵0 ∴a=,
    ∴当a=时,D、O、C、B四点共圆.
    【点睛】本题考查了二次函数、相似三角形的性质、四点共圆等,综合性较强,有一定的难度,正确进行分析,熟练应用相关知识是解题的关键.
    21、(1)甲种服装最多购进75件,(2)见解析.
    【解析】
    (1)设甲种服装购进x件,则乙种服装购进(100-x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;
    (2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.
    【详解】
    (1)设购进甲种服装x件,由题意可知:80x+60(100-x)≤7500,解得x≤75
    答:甲种服装最多购进75件,
    (2)设总利润为W元,
    W=(120-80-a)x+(90-60)(100-x)
    即w=(10-a)x+1.
    ①当0<a<10时,10-a>0,W随x增大而增大,
    ∴当x=75时,W有最大值,即此时购进甲种服装75件,乙种服装25件;
    ②当a=10时,所以按哪种方案进货都可以;
    ③当10<a<20时,10-a<0,W随x增大而减小.
    当x=65时,W有最大值,即此时购进甲种服装65件,乙种服装35件.
    【点睛】
    本题考查了一元一次方程的应用,不等式的应用,以及一次函数的性质,正确利用x表示出利润是关键.
    22、(1)见解析(2)
    【解析】
    (1)连接OE,BE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;
    (2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=从而可求出r的值.
    【详解】
    解:(1)连接OE,BE,
    ∵DE=EF,
    ∴=
    ∴∠OBE=∠DBE
    ∵OE=OB,
    ∴∠OEB=∠OBE
    ∴∠OEB=∠DBE,
    ∴OE∥BC
    ∵⊙O与边AC相切于点E,
    ∴OE⊥AC
    ∴BC⊥AC
    ∴∠C=90°
    (2)在△ABC,∠C=90°,BC=3,sinA=,
    ∴AB=5,
    设⊙O的半径为r,则AO=5﹣r,
    在Rt△AOE中,sinA=



    【点睛】
    本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.
    23、.
    【解析】
    先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=,由于x不能取±1,2,所以把x=0代入计算即可.
    【详解】
    ,
    =
    =
    =
    =,
    当x=0时,原式=.
    24、(1) (2)(0,)
    【解析】
    (1)根据反比例函数比例系数k的几何意义得出|k|=1,进而得到反比例函数的解析式;
    (2)作点A关于y轴的对称点A′,连接A′B,交y轴于点P,得到PA+PB最小时,点P的位置,根据两点间的距离公式求出最小值A′B的长;利用待定系数法求出直线A′B的解析式,得到它与y轴的交点,即点P的坐标.
    【详解】
    (1)∵反比例函数 y= =(k>0)的图象过点 A,过 A 点作 x 轴的垂线,垂足为 M,
    ∴|k|=1,
    ∵k>0,
    ∴k=2,
    故反比例函数的解析式为:y=;
    (2)作点 A 关于 y 轴的对称点 A′,连接 A′B,交 y 轴于点 P,则 PA+PB 最小.

    由,解得,或,
    ∴A(1,2),B(4,),
    ∴A′(﹣1,2),最小值 A′B= =,
    设直线 A′B 的解析式为 y=mx+n,
    则 ,解得,
    ∴直线 A′B 的解析式为 y= ,
    ∴x=0 时,y= ,
    ∴P 点坐标为(0,).
    【点睛】
    本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA+PB最小时,点P的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键.

    相关试卷

    2023年湖南省长沙市雅境中学九年级中考二模数学试题(含解析): 这是一份2023年湖南省长沙市雅境中学九年级中考二模数学试题(含解析),共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    湖南省长沙市长雅实、西雅、雅洋市级名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份湖南省长沙市长雅实、西雅、雅洋市级名校2021-2022学年中考数学模拟精编试卷含解析,共16页。

    2022届湖南省长沙市西雅中学中考数学考前最后一卷含解析: 这是一份2022届湖南省长沙市西雅中学中考数学考前最后一卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,学校小组名同学的身高等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map