|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖南省长沙市周南石燕湖中学2021-2022学年毕业升学考试模拟卷数学卷含解析
    立即下载
    加入资料篮
    湖南省长沙市周南石燕湖中学2021-2022学年毕业升学考试模拟卷数学卷含解析01
    湖南省长沙市周南石燕湖中学2021-2022学年毕业升学考试模拟卷数学卷含解析02
    湖南省长沙市周南石燕湖中学2021-2022学年毕业升学考试模拟卷数学卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省长沙市周南石燕湖中学2021-2022学年毕业升学考试模拟卷数学卷含解析

    展开
    这是一份湖南省长沙市周南石燕湖中学2021-2022学年毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,一、单选题等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积约为250000m2,则250000用科学记数法表示为( )
    A.25×104m2 B.0.25×106m2 C.2.5×105m2 D.2.5×106m2
    2.化简的结果是(  )
    A. B. C. D.
    3.下列各曲线中表示y是x的函数的是(  )
    A. B. C. D.
    4.如图,正六边形ABCDEF内接于,M为EF的中点,连接DM,若的半径为2,则MD的长度为  

    A. B. C.2 D.1
    5.下列图形中为正方体的平面展开图的是(  )
    A. B.
    C. D.
    6.下列二次根式中,是最简二次根式的是(  )
    A. B. C. D.
    7.若55+55+55+55+55=25n,则n的值为(  )
    A.10 B.6 C.5 D.3
    8.已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为(  )
    A.1 B.2 C.3 D.4
    9.在实数|﹣3|,﹣2,0,π中,最小的数是(  )
    A.|﹣3| B.﹣2 C.0 D.π
    10.一、单选题
    如图: 在中,平分,平分,且交于,若,则等于( )

    A.75 B.100 C.120 D.125
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如果将“概率”的英文单词 probability中的11个字母分别写在11张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b的概率是________.
    12.已知整数k<5,若△ABC的边长均满足关于x的方程,则△ABC的周长是   .
    13.化简:=_____.
    14.一个正多边形的每个内角等于,则它的边数是____.
    15.如图,点G是的重心,AG的延长线交BC于点D,过点G作交AC于点E,如果,那么线段GE的长为______.

    16.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则∠DAE=______.

    三、解答题(共8题,共72分)
    17.(8分)先化简,再求值:(1﹣)÷,其中x是不等式组的整数解
    18.(8分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
    根据统计图的信息解决下列问题:
    本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是   ;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
    19.(8分)如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.CD与BE相等?若相等,请证明;若不相等,请说明理由;若∠BAC=90°,求证:BF1+CD1=FD1.

    20.(8分)如图,在平面直角坐标系中,一次函数与反比例函数的图像交于点和点,且经过点.
    求反比例函数和一次函数的表达式;求当时自变量的取值范围.
    21.(8分)如图,在平面直角坐标系中,一次函数的图象与轴相交于点,与反比例函数的图象相交于点,.

    (1)求一次函数和反比例函数的解析式;
    (2)根据图象,直接写出时,的取值范围;
    (3)在轴上是否存在点,使为等腰三角形,如果存在,请求点的坐标,若不存在,请说明理由.
    22.(10分)解方程:
    23.(12分)如图,在平面直角坐标系xOy中,函数的图象与直线y=2x+1交于点A(1,m).
    (1)求k、m的值;
    (2)已知点P(n,0)(n≥1),过点P作平行于y轴的直线,交直线y=2x+1于点B,交函数的图象于点C.横、纵坐标都是整数的点叫做整点.

    ①当n=3时,求线段AB上的整点个数;
    ②若的图象在点A、C之间的部分与线段AB、BC所围成的区域内(包括边界)恰有5个整点,直接写出n的取值范围.
    24.如图,在平面直角坐标系 中,函数的图象与直线交于点A(3,m).求k、m的值;已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数 的图象于点N.
    ①当n=1时,判断线段PM与PN的数量关系,并说明理由;
    ②若PN≥PM,结合函数的图象,直接写出n的取值范围.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.
    【详解】
    解:由科学记数法可知:250000 m2=2.5×105m2,
    故选C.
    【点睛】
    此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
    2、D
    【解析】
    将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.
    【详解】
    原式=×=×(+1)=2+.
    故选D.
    【点睛】
    本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.
    3、D
    【解析】
    根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.
    故选D.
    4、A
    【解析】
    连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.
    【详解】
    连接OM、OD、OF,
    ∵正六边形ABCDEF内接于⊙O,M为EF的中点,
    ∴OM⊥OD,OM⊥EF,∠MFO=60°,
    ∴∠MOD=∠OMF=90°,
    ∴OM=OF•sin∠MFO=2×=,
    ∴MD=,
    故选A.

    【点睛】
    本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.
    5、C
    【解析】
    利用正方体及其表面展开图的特点依次判断解题.
    【详解】
    由四棱柱四个侧面和上下两个底面的特征可知A,B,D上底面不可能有两个,故不是正方体的展开图,选项C可以拼成一个正方体,故选C.
    【点睛】
    本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键.
    6、B
    【解析】
    根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式判断即可.
    【详解】
    A、 =4,不符合题意;
    B、是最简二次根式,符合题意;
    C、=,不符合题意;
    D、=,不符合题意;
    故选B.
    【点睛】
    本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
    7、D
    【解析】
    直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.
    【详解】
    解:∵55+55+55+55+55=25n,
    ∴55×5=52n,
    则56=52n,
    解得:n=1.
    故选D.
    【点睛】
    此题主要考查了幂的乘方运算,正确将原式变形是解题关键.
    8、B
    【解析】
    先由平均数是3可得x的值,再结合方差公式计算.
    【详解】
    ∵数据1、2、3、x、5的平均数是3,
    ∴=3,
    解得:x=4,
    则数据为1、2、3、4、5,
    ∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,
    故选B.
    【点睛】
    本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.
    9、B
    【解析】
    直接利用利用绝对值的性质化简,进而比较大小得出答案.
    【详解】
    在实数|-3|,-1,0,π中,
    |-3|=3,则-1<0<|-3|<π,
    故最小的数是:-1.
    故选B.
    【点睛】
    此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.
    10、B
    【解析】
    根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.
    【详解】
    解:∵CE平分∠ACB,CF平分∠ACD,
    ∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,
    ∴△EFC为直角三角形,
    又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
    ∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
    ∴CM=EM=MF=5,EF=10,
    由勾股定理可知CE2+CF2=EF2=1.
    故选:B.
    【点睛】
    本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    分析:让英文单词probability中字母b的个数除以字母的总个数即为所求的概率.
    详解:∵英文单词probability中,一共有11个字母,其中字母b有2个,∴任取一张,那么取到字母b的概率为.
    故答案为.
    点睛:本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.
    12、6或12或1.
    【解析】
    根据题意得k≥0且(3)2﹣4×8≥0,解得k≥.
    ∵整数k<5,∴k=4.
    ∴方程变形为x2﹣6x+8=0,解得x1=2,x2=4.
    ∵△ABC的边长均满足关于x的方程x2﹣6x+8=0,
    ∴△ABC的边长为2、2、2或4、4、4或4、4、2.
    ∴△ABC的周长为6或12或1.
    考点:一元二次方程根的判别式,因式分解法解一元二次方程,三角形三边关系,分类思想的应用.
    【详解】
    请在此输入详解!
    13、
    【解析】
    先算除法,再算减法,注意把分式的分子分母分解因式
    【详解】
    原式=
    =
    =
    【点睛】
    此题考查分式的混合运算,掌握运算法则是解题关键
    14、十二
    【解析】
    首先根据内角度数计算出外角度数,再用外角和360°除以外角度数即可.
    【详解】
    ∵一个正多边形的每个内角为150°,
    ∴它的外角为30°,
    360°÷30°=12,
    故答案为十二.
    【点睛】
    此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角.
    15、2
    【解析】
    分析:由点G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可证得△AEG∽△ACD,然后由相似三角形的对应边成比例,即可求得线段GE的长.
    详解:∵点G是△ABC重心,BC=6,
    ∴CD=BC=3,AG:AD=2:3,
    ∵GE∥BC,
    ∴△AEG∽△ADC,
    ∴GE:CD=AG:AD=2:3,
    ∴GE=2.
    故答案为2.
    点睛:本题考查了三角形重心的定义和性质、相似三角形的判定和性质.利用三角形重心的性质得出AG:AD=2:3是解题的关键.
    16、10°
    【解析】
    根据线段的垂直平分线得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE的度数即可得到答案.
    【详解】
    ∵点D、E分别是AB、AC边的垂直平分线与BC的交点,
    ∴AD=BD,AE=CE,
    ∴∠B=∠BAD,∠C=∠CAE,
    ∵∠B=40°,∠C=45°,
    ∴∠B+∠C=85°,
    ∴∠BAD+∠CAE=85°,
    ∴∠DAE=∠BAC-(∠BAD+∠CAE)=180°-85°-85°=10°,
    故答案为10°
    【点睛】
    本题主要考查对等腰三角形的性质,三角形的内角和定理,线段的垂直平分线的性质等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.

    三、解答题(共8题,共72分)
    17、x=3时,原式=
    【解析】
    原式括号中两项通分并利用同分母分式的减法法则计算,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,求出不等式组的解集,找出解集中的整数计算得出到x的值,代入计算即可求出值.
    【详解】
    解:原式=÷

    =,
    解不等式组得,2<x<,
    ∵x取整数,
    ∴x=3,
    当x=3时,原式=.
    【点睛】
    本题主要考查分式额化简求值及一元一次不等式组的整数解.
    18、(1)150人;(2)补图见解析;(3)144°;(4)300盒.
    【解析】
    (1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.
    (2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.
    (3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.
    【详解】
    解:(1)本次调查的学生有30÷20%=150人;
    (2)C类别人数为150﹣(30+45+15)=60人,
    补全条形图如下:

    (3)扇形统计图中C对应的中心角度数是360°×=144°
    故答案为144°
    (4)600×()=300(人),
    答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.
    【点睛】
    本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.
    19、(1)CD=BE,理由见解析;(1)证明见解析.
    【解析】
    (1)由两个三角形为等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根据“SAS”可证得△EAB≌△CAD,即可得出结论;
    (1)根据(1)中结论和等腰直角三角形的性质得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后证得EF=FD,BE=CD,等量代换即可得出结论.
    【详解】
    解:(1)CD=BE,理由如下:
    ∵△ABC和△ADE为等腰三角形,
    ∴AB=AC,AD=AE,
    ∵∠EAD=∠BAC,
    ∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,
    即∠EAB=∠CAD,
    在△EAB与△CAD中,
    ∴△EAB≌△CAD,
    ∴BE=CD;
    (1)∵∠BAC=90°,
    ∴△ABC和△ADE都是等腰直角三角形,
    ∴∠ABF=∠C=45°,
    ∵△EAB≌△CAD,
    ∴∠EBA=∠C,
    ∴∠EBA=45°,
    ∴∠EBF=90°,
    在Rt△BFE中,BF1+BE1=EF1,
    ∵AF平分DE,AE=AD,
    ∴AF垂直平分DE,
    ∴EF=FD,
    由(1)可知,BE=CD,
    ∴BF1+CD1=FD1.
    【点睛】
    本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,结合题意寻找出三角形全等的条件是解决此题的关键.
    20、 (1) ,;(2)或.
    【解析】
    (1)把点A坐标代入可求出m的值即可得反比例函数解析式;把点A、点C代入可求出k、b的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x的取值范围即可.
    【详解】
    (1)把代入得.
    ∴反比例函数的表达式为
    把和代入得,
    解得
    ∴一次函数的表达式为.
    (2)由得
    ∴当或时,.
    【点睛】
    本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.
    21、(1); ;(2)或;(3)存在,或或或.
    【解析】
    (1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;
    (2)利用图象直接得出结论;
    (3)分、、三种情况讨论,即可得出结论.
    【详解】
    (1)一次函数与反比例函数,相交于点,,
    ∴把代入得:,
    ∴,
    ∴反比例函数解析式为,
    把代入得:,
    ∴,
    ∴点C的坐标为,
    把,代入得:,
    解得:,
    ∴一次函数解析式为;
    (2)根据函数图像可知:
    当或时,一次函数的图象在反比例函数图象的上方,
    ∴当或时,;
    (3)存在或或或时,为等腰三角形,理由如下:
    过作轴,交轴于,

    ∵直线与轴交于点,
    ∴令得,,
    ∴点A的坐标为,
    ∵点B的坐标为,
    ∴点D的坐标为,
    ∴,
    ①当时,则,

    ∴点P的坐标为:、;
    ②当时,
    是等腰三角形,,
    平分,

    ∵点D的坐标为,
    ∴点P的坐标为,即;
    ③当时,如图:

    设,
    则,
    在中,,,,
    由勾股定理得:


    解得:,

    ∴点P的坐标为,即,
    综上所述,当或或或时,为等腰三角形.
    【点睛】
    本题是反比例函数综合题,主要考查了待定系数法,利用图象确定函数值满足条件的自变量的范围,等腰三角形的性质,勾股定理,解(1)的关键是待定系数法的应用,解(2)的关键是利用函数图象确定x的范围,解(3)的关键是分类讨论.
    22、x=-4是方程的解
    【解析】
    分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】


    ∴x=-4,
    当x=-4时,
    ∴x=-4是方程的解
    【点睛】
    本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
    23、(1)m=3,k=3;(2)①线段AB上有(1,3)、(2,5)、(3,7)共3个整点,②当2≤n<3时,有五个整点.
    【解析】
    (1)将A点代入直线解析式可求m,再代入,可求k.
    (2)①根据题意先求B,C两点,可得线段AB上的整点的横坐标的范围1≤x≤3,且x为整数,所以x取1,2,3.再代入可求整点,即求出整点个数.
    ②根据图象可以直接判断2≤n<3.
    【详解】
    (1)∵点A(1,m)在y=2x+1上,
    ∴m=2×1+1=3.
    ∴A(1,3).
    ∵点A(1,3)在函数的图象上,
    ∴k=3.
    (2)①当n=3时,B、C两点的坐标为B(3,7)、C(3,1).
    ∵整点在线段AB上
    ∴1≤x≤3且x为整数
    ∴x=1,2,3
    ∴当x=1时,y=3,
    当x=2时,y=5,
    当x=3时,y=7,
    ∴线段AB上有(1,3)、(2,5)、(3,7)共3个整点.

    ②由图象可得当2≤n<3时,有五个整点.
    【点睛】
    本题考查反比例函数和一次函数的交点问题,待定系数法,以及函数图象的性质.关键是能利用函数图象有关解决问题.
    24、 (1) k的值为3,m的值为1;(2)0 【解析】
    分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.
    (2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;
    ②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.
    详解:(1)将A(3,m)代入y=x-2,
    ∴m=3-2=1,
    ∴A(3,1),
    将A(3,1)代入y=,
    ∴k=3×1=3,
    m的值为1.
    (2)①当n=1时,P(1,1),
    令y=1,代入y=x-2,
    x-2=1,
    ∴x=3,
    ∴M(3,1),
    ∴PM=2,
    令x=1代入y=,
    ∴y=3,
    ∴N(1,3),
    ∴PN=2
    ∴PM=PN,
    ②P(n,n),
    点P在直线y=x上,
    过点P作平行于x轴的直线,交直线y=x-2于点M,

    M(n+2,n),
    ∴PM=2,
    ∵PN≥PM,
    即PN≥2,
    ∴0<n≤1或n≥3
    点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.

    相关试卷

    2023-2024学年湖南省长沙市周南石燕湖中学九上数学期末检测模拟试题含答案: 这是一份2023-2024学年湖南省长沙市周南石燕湖中学九上数学期末检测模拟试题含答案,共6页。试卷主要包含了如图,在菱形中,,且连接则等内容,欢迎下载使用。

    2023-2024学年湖南省长沙市周南石燕湖中学九年级数学第一学期期末监测模拟试题含答案: 这是一份2023-2024学年湖南省长沙市周南石燕湖中学九年级数学第一学期期末监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知,要使有意义,则x的取值范围为等内容,欢迎下载使用。

    2023-2024学年湖南省长沙市周南石燕湖中学数学八上期末达标检测试题含答案: 这是一份2023-2024学年湖南省长沙市周南石燕湖中学数学八上期末达标检测试题含答案,共8页。试卷主要包含了如图,已知一次函数的图象经过A,估计+1的值应在等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map