终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    湖南省株洲市第十九中学2022年中考数学对点突破模拟试卷含解析

    立即下载
    加入资料篮
    湖南省株洲市第十九中学2022年中考数学对点突破模拟试卷含解析第1页
    湖南省株洲市第十九中学2022年中考数学对点突破模拟试卷含解析第2页
    湖南省株洲市第十九中学2022年中考数学对点突破模拟试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省株洲市第十九中学2022年中考数学对点突破模拟试卷含解析

    展开

    这是一份湖南省株洲市第十九中学2022年中考数学对点突破模拟试卷含解析,共23页。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为(  )

    A.5 B.10 C.10 D.15
    2.已知x=2﹣,则代数式(7+4)x2+(2+)x+ 的值是(  )
    A.0 B. C.2+ D.2﹣
    3.函数y=ax2+1与(a≠0)在同一平面直角坐标系中的图象可能是( )
    A. B. C. D.
    4.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )

    A.80° B.90° C.100° D.102°
    5.为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是(  )
    A. B.
    C. D.
    6.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得
    A. B.
    C. D.
    7.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为(  )

    A. B. C. D.
    8.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是  
    A. B. C. D.
    9.如图,Rt△ABC中,∠C=90°,AC=4,BC=4,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为(  )

    A.2π B.4π C.6π D.8π
    10.已知x2-2x-3=0,则2x2-4x的值为( )
    A.-6 B.6 C.-2或6 D.-2或30
    11.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图所示.其中阅读时间是8~10小时的频数和频率分别是( )

    A.15,0.125 B.15,0.25 C.30,0.125 D.30,0.25
    12.如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是(  )

    A. B.
    C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,且AB=AC,若CD=2,则OE的长为_____.

    14.计算:________.
    15.分解因式______.
    16.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m.

    17.如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是____.

    18.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_________海里.(结果保留根号)

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.

    20.(6分)如图,在△ABC中,∠ACB=90°,点D是AB上一点,以BD为直径的⊙O和AB相切于点P.
    (1)求证:BP平分∠ABC;
    (2)若PC=1,AP=3,求BC的长.

    21.(6分) “大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:

    请根据图中提供的信息,解答下列问题:
    (1)求被调查的学生总人数;
    (2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
    (3)若该校共有800名学生,请估计“最想去景点B“的学生人数.
    22.(8分)先化简后求值:已知:x=﹣2,求的值.
    23.(8分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)

    24.(10分)(1)(﹣2)2+2sin 45°﹣
    (2)解不等式组,并将其解集在如图所示的数轴上表示出来.

    25.(10分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.求购买A型和B型公交车每辆各需多少万元?预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?
    26.(12分)已知,如图所示直线y=kx+2(k≠0)与反比例函数y=(m≠0)分别交于点P,与y轴、x轴分别交于点A和点B,且cos∠ABO=,过P点作x轴的垂线交于点C,连接AC,
    (1)求一次函数的解析式.
    (2)若AC是△PCB的中线,求反比例函数的关系式.

    27.(12分)已知,抛物线(为常数).

    (1)抛物线的顶点坐标为( , )(用含的代数式表示);
    (2)若抛物线经过点且与图象交点的纵坐标为3,请在图1中画出抛物线的简图,并求的函数表达式;
    (3)如图2,规矩的四条边分别平行于坐标轴,,若抛物线经过两点,且矩形在其对称轴的左侧,则对角线的最小值是 .



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,如图所示,

    ∵AE=CG,BE=BE′,
    ∴E′G′=AB=10,
    ∵GG′=AD=5,
    ∴E′G=,
    ∴C四边形EFGH=2E′G=10,
    故选B.
    【点睛】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键.
    2、C
    【解析】
    把x的值代入代数式,运用完全平方公式和平方差公式计算即可
    【详解】
    解:当x=2﹣时,
    (7+4)x2+(2+)x+
    =(7+4)(2﹣)2+(2+)(2﹣)+
    =(7+4)(7-4)+1+
    =49-48+1+
    =2+
    故选:C.
    【点睛】
    此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算.
    3、B
    【解析】
    试题分析:分a>0和a<0两种情况讨论:
    当a>0时,y=ax2+1开口向上,顶点坐标为(0,1);位于第一、三象限,没有选项图象符合;
    当a<0时,y=ax2+1开口向下,顶点坐标为(0,1);位于第二、四象限,B选项图象符合.
    故选B.
    考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.
    4、A
    【解析】
    分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°∠1−∠A,代入求出即可.
    详解:∵AB∥CD.
    ∴∠A=∠3=40°,
    ∵∠1=60°,
    ∴∠2=180°∠1−∠A=80°,
    故选:A.
    点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.
    5、C
    【解析】
    根据轴对称和中心对称的定义去判断即可得出正确答案.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故此选项错误;
    B、不是轴对称图形,也不是中心对称图形,故此选项错误;
    C、是轴对称图形,也是中心对称图形,故此选项正确;
    D、是轴对称图形,不是中心对称图形,故此选项错误.
    故选:C.
    【点睛】
    本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解和把握.
    6、A
    【解析】
    若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.
    解:设走路线一时的平均速度为x千米/小时,

    故选A.
    7、B
    【解析】
    阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.
    【详解】
    由旋转可知AD=BD,
    ∵∠ACB=90°,AC=2,
    ∴CD=BD,
    ∵CB=CD,
    ∴△BCD是等边三角形,
    ∴∠BCD=∠CBD=60°,
    ∴BC=AC=2,
    ∴阴影部分的面积=2×2÷2−=2−.
    故答案选:B.
    【点睛】
    本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算.
    8、A
    【解析】
    根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.
    【详解】
    ∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,
    ∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,
    ∴m<,
    故选A.
    【点睛】
    本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
    9、B
    【解析】
    先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由∠A+∠B=90°可知阴影部分的面积等于一个圆的面积的.
    【详解】
    在△ABC中,依据勾股定理可知AB==8,
    ∵两等圆⊙A,⊙B外切,
    ∴两圆的半径均为4,
    ∵∠A+∠B=90°,
    ∴阴影部分的面积==4π.
    故选:B.
    【点睛】
    本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键.
    10、B
    【解析】
    方程两边同时乘以2,再化出2x2-4x求值.
    解:x2-2x-3=0
    2×(x2-2x-3)=0
    2×(x2-2x)-6=0
    2x2-4x=6
    故选B.
    11、D
    【解析】
    分析:
    根据频率分布直方图中的数据信息和被调查学生总数为120进行计算即可作出判断.
    详解:
    由频率分布直方图可知:一周内用于阅读的时间在8-10小时这组的:频率:组距=0.125,而组距为2,
    ∴一周内用于阅读的时间在8-10小时这组的频率=0.125×2=0.25,
    又∵被调查学生总数为120人,
    ∴一周内用于阅读的时间在8-10小时这组的频数=120×0.25=30.
    综上所述,选项D中数据正确.
    故选D.
    点睛:本题解题的关键有两点:(1)要看清,纵轴上的数据是“频率:组距”的值,而不是频率;(2)要弄清各自的频数、频率和总数之间的关系.
    12、A
    【解析】
    此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可.
    【详解】
    解:设CD的长为与正方形DEFG重合部分图中阴影部分的面积为
    当C从D点运动到E点时,即时,.
    当A从D点运动到E点时,即时,,
    与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.
    故选A.
    【点睛】
    本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值范围.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    连接OA,所以∠OAC=90°,因为AB=AC,所以∠B=∠C,根据圆周角定理可知∠AOD=2∠B=2∠C,故可求出∠B和∠C的度数,在Rt△OAC中,求出OA的值,再在Rt△OAE中,求出OE的值,得到答案.
    【详解】
    连接OA,

    由题意可知∠OAC=90°,
    ∵AB=AC,
    ∴∠B=∠C,
    根据圆周角定理可知∠AOD=2∠B=2∠C,
    ∵∠OAC=90°
    ∴∠C+∠AOD=90°,
    ∴∠C+2∠C=90°,
    故∠C=30°=∠B,
    ∴在Rt△OAC中,sin∠C==,
    ∴OC=2OA,
    ∵OA=OD,
    ∴OD+CD=2OA,
    ∴CD=OA=2,
    ∵OB=OA,
    ∴∠OAE=∠B=30°,
    ∴在Rt△OAE中,sin∠OAE==,
    ∴OA=2OE,
    ∴OE=OA=,
    故答案为.
    【点睛】
    本题主要考查了圆周角定理,角的转换,以及在直角三角形中的三角函数的运用,解本题的要点在于求出OA的值,从而利用直角三角形的三角函数的运用求出答案.
    14、
    【解析】
    根据二次根式的运算法则先算乘法,再将分母有理化,然后相加即可.
    【详解】
    解:原式=
    =
    【点睛】
    本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    15、(x+y+z)(x﹣y﹣z).
    【解析】
    当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题后三项可以为一组组成完全平方式,再用平方差公式即可.
    【详解】
    x2-y2-z2-2yz,
    =x2-(y2+z2+2yz),
    =x2-(y+z)2,
    =(x+y+z)(x-y-z).
    故答案为(x+y+z)(x-y-z).
    【点睛】
    本题考查了用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题后三项可组成完全平方公式,可把后三项分为一组.
    16、m.
    【解析】
    利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径.
    【详解】
    解:易得扇形的圆心角所对的弦是直径,
    ∴扇形的半径为: m,
    ∴扇形的弧长为: =πm,
    ∴圆锥的底面半径为:π÷2π=m.
    【点睛】
    本题考查:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长,解题关键是弧长公式.
    17、1
    【解析】
    如图作点D关于BC的对称点D′,连接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出当E、F、P、D′共线时,PF+PD′定值最小,最小值=ED′﹣EF.
    【详解】
    如图作点D关于BC的对称点D′,连接PD′,ED′,
    在Rt△EDD′中,∵DE=6,DD′=1,
    ∴ED′==10,
    ∵DP=PD′,
    ∴PD+PF=PD′+PF,
    ∵EF=EA=2是定值,
    ∴当E、F、P、D′共线时,PF+PD′定值最小,最小值=10﹣2=1,
    ∴PF+PD的最小值为1,
    故答案为1.

    【点睛】
    本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.
    18、5
    【解析】
    如图,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性质求出BC即可.
    【详解】
    如图,作BH⊥AC于H.

    在Rt△ABH中,∵AB=10海里,∠BAH=30°,
    ∴∠ABH=60°,BH=AB=5(海里),
    在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),
    ∴BH=CH=5海里,
    ∴CB=5(海里).
    故答案为:5.
    【点睛】
    本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、证明见解析.
    【解析】
    过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证.
    【详解】

    证明:如图,过点B作BF⊥CE于F,
    ∵CE⊥AD,
    ∴∠D+∠DCE=90°,
    ∵∠BCD=90°,
    ∴∠BCF+∠DCE=90°
    ∴∠BCF=∠D,
    在△BCF和△CDE中,

    ∴△BCF≌△CDE(AAS),
    ∴BF=CE,
    又∵∠A=90°,CE⊥AD,BF⊥CE,
    ∴四边形AEFB是矩形,
    ∴AE=BF,
    ∴AE=CE.
    20、(1)证明见解析;(2).
    【解析】
    试题分析:(1)连接OP,首先证明OP∥BC,推出∠OPB=∠PBC,由OP=OB,推出∠OPB=∠OBP,由此推出∠PBC=∠OBP;
    (2)作PH⊥AB于H.首先证明PC=PH=1,在Rt△APH中,求出AH,由△APH∽△ABC,求出AB、BH,由Rt△PBC≌Rt△PBH,推出BC=BH即可解决问题.
    试题解析:
    (1)连接OP,
    ∵AC是⊙O的切线,
    ∴OP⊥AC,
    ∴∠APO=∠ACB=90°,
    ∴OP∥BC,
    ∴∠OPB=∠PBC,
    ∵OP=OB,
    ∴∠OPB=∠OBP,
    ∴∠PBC=∠OBP,
    ∴BP平分∠ABC;
    (2)作PH⊥AB于H.则∠AHP=∠BHP=∠ACB=90°,
    又∵∠PBC=∠OBP,PB=PB,
    ∴△PBC≌△PBH ,
    ∴PC=PH=1,BC=BH,
    在Rt△APH中,AH=,
    在Rt△ACB中,AC2+BC2=AB2
    ∴(AP+PC)2+BC2=(AH+HB)2,
    即42+BC2=(+BC)2,
    解得.

    21、(1)40;(2)72;(3)1.
    【解析】
    (1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
    (2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
    (3)用800乘以样本中最想去A景点的人数所占的百分比即可.
    【详解】
    (1)被调查的学生总人数为8÷20%=40(人);
    (2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:

    扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;
    (3)800×=1,所以估计“最想去景点B“的学生人数为1人.
    22、
    【解析】
    先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.
    【详解】
    解:原式=1﹣•(÷)=1﹣••=1﹣=,
    当x=﹣2时,
    原式===.
    【点睛】
    本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.
    23、水坝原来的高度为12米
    【解析】
    试题分析:设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.
    试题解析:设BC=x米,
    在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,
    在Rt△EBD中,
    ∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,
    即2+x=4+,解得x=12,即BC=12,
    答:水坝原来的高度为12米..
    考点:解直角三角形的应用,坡度.
    24、(1)4﹣5;﹣<x≤2,在数轴上表示见解析
    【解析】
    (1)此题涉及乘方、特殊角的三角函数、负整数指数幂和二次根式的化简,首先针对各知识点进行计算,再计算实数的加减即可;
    (2)首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.
    【详解】
    解:(1)原式=4+2×﹣2×3=4+﹣6=4﹣5;
    (2),
    解①得:x>﹣,
    解②得:x≤2,
    不等式组的解集为:﹣<x≤2,
    在数轴上表示为:

    【点睛】
    此题主要考查了解一元一次不等式组,以实数的运算,关键是正确确定两个不等式的解集,掌握特殊角的三角函数值.
    25、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
    (2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;
    (3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.
    【解析】
    详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,
    解得,
    答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
    (2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得

    解得:6≤a≤8,
    因为a是整数,
    所以a=6,7,8;
    则(10-a)=4,3,2;
    三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.
    (3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;
    ②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;
    ③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;
    故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
    【点睛】
    此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.
    26、(2)y=2x+2;(2)y=.
    【解析】
    (2)由cos∠ABO=,可得到tan∠ABO=2,从而可得到k=2;
    (2)先求得A、B的坐标,然后依据中点坐标公式可求得点P的坐标,将点P的坐标代入反比例函数的解析式可求得m的值.
    【详解】
    (2)∵cos∠ABO=,
    ∴tan∠ABO=2.又∵OA=2
    ∴OB=2.B(-2,0)代入y=kx+2得k=2
    ∴一次函数的解析式为y=2x+2.
    (2)当x=0时,y=2,
    ∴A(0,2).
    当y=0时,2x+2=0,解得:x=﹣2.
    ∴B(﹣2,0).
    ∵AC是△PCB的中线,
    ∴P(2,4).
    ∴m=xy=2×4=4,
    ∴反例函数的解析式为y=.
    【点睛】
    本题主要考查的是反比例函数与一次函数的交点、锐角三角函数的定义、中点坐标公式的应用,确定一次函数系数k=tan∠ABO是解题的关键.
    27、(1);(2)图象见解析,或;(3)
    【解析】
    (1)将抛物线的解析式配成顶点式,即可得出顶点坐标;
    (2)根据抛物线经过点M,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式;
    (3)设出A的坐标,表示出C,D的坐标,得到CD的长度,根据题意找到CD的最小值,因为AD的长度不变,所以当CD最小时,对角线AC最小,则答案可求.
    【详解】
    解:(1),
    抛物线的顶点的坐标为.
    故答案为:
    (2)将代入抛物线的解析式得:
    解得:,
    抛物线的解析式为.
    抛物线的大致图象如图所示:

    将代入得:

    解得:或
    抛物线与反比例函数图象的交点坐标为或.
    将代入得:,

    将代入得:,

    综上所述,反比例函数的表达式为或.
    (3)设点的坐标为,
    则点的坐标为,
    的坐标为.

    的长随的增大而减小.
    矩形在其对称轴的左侧,抛物线的对称轴为,


    当时,的长有最小值,的最小值.
    的长度不变,
    当最小时,有最小值.
    的最小值
    故答案为:.
    【点睛】
    本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键.

    相关试卷

    2022年湖南省益阳市普通重点中学中考数学对点突破模拟试卷含解析:

    这是一份2022年湖南省益阳市普通重点中学中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,我省2013年的快递业务量为1,定义运算“※”为等内容,欢迎下载使用。

    2022年湖南省株洲市第十九中学中考冲刺卷数学试题含解析:

    这是一份2022年湖南省株洲市第十九中学中考冲刺卷数学试题含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2022届重庆清化中学中考数学对点突破模拟试卷含解析:

    这是一份2022届重庆清化中学中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了如图,,,则的大小是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map