|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖南长沙市岳麓区重点达标名校2022年十校联考最后数学试题含解析
    立即下载
    加入资料篮
    湖南长沙市岳麓区重点达标名校2022年十校联考最后数学试题含解析01
    湖南长沙市岳麓区重点达标名校2022年十校联考最后数学试题含解析02
    湖南长沙市岳麓区重点达标名校2022年十校联考最后数学试题含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南长沙市岳麓区重点达标名校2022年十校联考最后数学试题含解析

    展开
    这是一份湖南长沙市岳麓区重点达标名校2022年十校联考最后数学试题含解析,共24页。试卷主要包含了已知点 A等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于点E,则阴影部分面积为(  )

    A.π B.π C.6﹣π D.2﹣π
    2.如图,已知点A、B、C、D在⊙O上,圆心O在∠D内部,四边形ABCO为平行四边形,则∠DAO与∠DCO的度数和是(  )

    A.60° B.45° C.35° D.30°
    3.在数轴上标注了四段范围,如图,则表示的点落在( )

    A.段① B.段② C.段③ D.段④
    4.下列命题中错误的有(  )个
    (1)等腰三角形的两个底角相等 
    (2)对角线相等且互相垂直的四边形是正方形
    (3)对角线相等的四边形为矩形 
    (4)圆的切线垂直于半径
    (5)平分弦的直径垂直于弦
    A.1 B.2 C.3 D.4
    5.剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形的是(  )
    A. B. C. D.
    6.如图,⊙O的直径AB=2,C是弧AB的中点,AE,BE分别平分∠BAC和∠ABC,以E为圆心,AE为半径作扇形EAB,π取3,则阴影部分的面积为(  )

    A.﹣4 B.7﹣4 C.6﹣ D.
    7.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为(  )

    A. B.π C.2π D.3π
    8.已知点 A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(  )
    A.y1<y2<y3 B.y2<y1<y3 C.y3<y2<y1 D.y3<y1<y2
    9.下列调查中,最适合采用普查方式的是(  )
    A.对太原市民知晓“中国梦”内涵情况的调查
    B.对全班同学1分钟仰卧起坐成绩的调查
    C.对2018年央视春节联欢晚会收视率的调查
    D.对2017年全国快递包裹产生的包装垃圾数量的调查
    10.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是  

    A.5 B.6 C.7 D.8
    11.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是(  )

    A. B. C. D.
    12.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).

    A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,中,,,,将绕点逆时针旋转至,使得点恰好落在上,与交于点,则的面积为_________.

    14.如果=k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.
    15.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为_____.

    16.如图,直线l1∥l2,则∠1+∠2=____.

    17.如图,某海监船以20km/h的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为_____km.

    18.一组数据4,3,5,x,4,5的众数和中位数都是4,则x=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.求双曲线的解析式;点P在x轴上,如果△ACP的面积为3,求点P的坐标.

    20.(6分)如图,已知点A,B,C在半径为4的⊙O上,过点C作⊙O的切线交OA的延长线于点D.
    (Ⅰ)若∠ABC=29°,求∠D的大小;
    (Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于点E,求:
    ①BE的长;
    ②四边形ABCD的面积.

    21.(6分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
    根据统计图的信息解决下列问题:

    (1)本次调查的学生有多少人?
    (2)补全上面的条形统计图;
    (3)扇形统计图中C对应的中心角度数是   ;
    (4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
    22.(8分)如图,在梯形ABCD中,AD∥BC,对角线 AC、BD交于点 M,点E在边BC上,且∠DAE=∠DCB,联结AE,AE与BD交于点F.

    (1)求证:;
    (2)连接DE,如果BF=3FM,求证:四边形ABED是平行四边形.
    23.(8分)已知线段a及如图形状的图案.
    (1)用直尺和圆规作出图中的图案,要求所作图案中圆的半径为a(保留作图痕迹)
    (2)当a=6时,求图案中阴影部分正六边形的面积.

    24.(10分)如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.

    (1)“抛物线三角形”一定是 三角形;
    (2)若抛物线的“抛物线三角形”是等腰直角三角形,求的值;
    (3)如图,△是抛物线的“抛物线三角形”,是否存在以原点为对称中心的矩形?若存在,求出过三点的抛物线的表达式;若不存在,说明理由.
    25.(10分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:求y与x之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?

    26.(12分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:求被调查的学生人数;补全条形统计图;已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?

    27.(12分)(2016山东省烟台市)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:

    (1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?
    (2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据题意作出合适的辅助线,可知阴影部分的面积是△BCD的面积减去△BOE和扇形OEC的面积.
    【详解】
    由题意可得,
    BC=CD=4,∠DCB=90°,
    连接OE,则OE=BC,

    ∴OE∥DC,
    ∴∠EOB=∠DCB=90°,
    ∴阴影部分面积为:
    =
    =6-π,
    故选C.
    【点睛】
    本题考查扇形面积的计算、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    2、A
    【解析】
    试题解析:连接OD,

    ∵四边形ABCO为平行四边形,
    ∴∠B=∠AOC,
    ∵点A. B. C.D在⊙O上,

    由圆周角定理得,

    解得,
    ∵OA=OD,OD=OC,
    ∴∠DAO=∠ODA,∠ODC=∠DCO,

    故选A.
    点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.
    3、C
    【解析】
    试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.
    ∵ 3.44<4<4.5,∴1.5<4<1.91,∴1.4<<1.9,
    所以应在③段上.
    故选C
    考点:实数与数轴的关系
    4、D
    【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.
    详解:等腰三角形的两个底角相等,(1)正确;
    对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误;
    对角线相等的平行四边形为矩形,(3)错误;
    圆的切线垂直于过切点的半径,(4)错误;
    平分弦(不是直径)的直径垂直于弦,(5)错误.
    故选D.
    点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
    5、C
    【解析】
    【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
    【详解】A、不是中心对称图形,是轴对称图形,故本选项错误;
    B、不是中心对称图形,是轴对称图形,故本选项错误;
    C、既不是中心对称图形,也不是轴对称图形,故本选项正确;
    D、是中心对称图形,不是轴对称图形,故本选项错误,
    故选C.
    【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.
    6、A
    【解析】
    ∵O的直径AB=2,
    ∴∠C=90°,
    ∵C是弧AB的中点,
    ∴,
    ∴AC=BC,
    ∴∠CAB=∠CBA=45°,
    ∵AE,BE分别平分∠BAC和∠ABC,
    ∴∠EAB=∠EBA=22.5°,
    ∴∠AEB=180°− (∠BAC+∠CBA)=135°,
    连接EO,

    ∵∠EAB=∠EBA,
    ∴EA=EB,
    ∵OA=OB,
    ∴EO⊥AB,
    ∴EO为Rt△ABC内切圆半径,
    ∴S△ABC=(AB+AC+BC)⋅EO=AC⋅BC,
    ∴EO=−1,
    ∴AE2=AO2+EO2=12+(−1)2=4−2,
    ∴扇形EAB的面积==,△ABE的面积=AB⋅EO=−1,
    ∴弓形AB的面积=扇形EAB的面积−△ABE的面积=,
    ∴阴影部分的面积=O的面积−弓形AB的面积=−()=−4,
    故选:A.
    7、A
    【解析】
    根据旋转的性质和弧长公式解答即可.
    【详解】
    解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,
    ∴∠AOC=90°,
    ∵OC=3,
    ∴点A经过的路径弧AC的长== ,
    故选:A.
    【点睛】
    此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.
    8、D
    【解析】
    试题分析:反比例函数y=-的图象位于二、四象限,在每一象限内,y随x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在该函数图象上,且x1<x2<0<x3,,∴y3<y1<y2;
    故选D.
    考点:反比例函数的性质.
    9、B
    【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
    详解:A、调查范围广适合抽样调查,故A不符合题意;
    B、适合普查,故B符合题意;
    C、调查范围广适合抽样调查,故C不符合题意;
    D、调查范围广适合抽样调查,故D不符合题意;
    故选:B.
    点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    10、B
    【解析】
    根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.
    【详解】
    解:∵半径OC垂直于弦AB,
    ∴AD=DB= AB=
    在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+( )2,
    解得,OA=4
    ∴OD=OC-CD=3,
    ∵AO=OE,AD=DB,
    ∴BE=2OD=6
    故选B
    【点睛】
    本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键
    11、D
    【解析】
    两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可.
    【详解】
    因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,
    所以P(飞镖落在黑色区域)==.
    故答案选:D.
    【点睛】
    本题考查了几何概率,解题的关键是熟练的掌握几何概率的相关知识点.
    12、C
    【解析】
    试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,
    故选C
    考点:1、方差;2、平均数;3、中位数;4、众数

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    首先证明△CAA′是等边三角形,再证明△A′DC是直角三角形,在Rt△A′DC中利用含30度的直角三角形三边的关系求出CD、A′D即可解决问题.
    【详解】
    在Rt△ACB中,∠ACB=90°,∠B=30°,
    ∴∠A=60°,
    ∵△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,
    ∴CA=CA′=2,∠CA′B′=∠A=60°,
    ∴△CAA′为等边三角形,
    ∴∠ACA′=60°,
    ∴∠BCA′=∠ACB -∠ACA′=90°-60°=30°,
    ∴∠A′DC=180°-∠CA′B′-∠BCA′=90°,
    在Rt△A′DC中,∵∠A′CD=30°,
    ∴A′D=CA′=1,CD=A′D=,
    ∴.
    故答案为:
    【点睛】
    本题考查了含30度的直角三角形三边的关系,等边三角形的判定和性质以及旋转的性质,掌握旋转的性质“对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等”是解题的关键.
    14、3
    【解析】
    ∵=k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),
    ∵a+c+e=3(b+d+f),∴k=3,
    故答案为:3.
    15、
    【解析】
    根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.
    【详解】
    根据图示可得,
    故答案是:.
    【点睛】
    此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.
    16、30°
    【解析】
    分别过A、B作l1的平行线AC和BD,则可知AC∥BD∥l1∥l2,再利用平行线的性质求得答案.
    【详解】
    如图,分别过A、B作l1的平行线AC和BD,

    ∵l1∥l2,
    ∴AC∥BD∥l1∥l2,
    ∴∠1=∠EAC,∠2=∠FBD,∠CAB+∠DBA=180°,
    ∵∠EAB+∠FBA=125°+85°=210°,
    ∴∠EAC+∠CAB+∠DBA+∠FBD=210°,
    即∠1+∠2+180°=210°,
    ∴∠1+∠2=30°,
    故答案为30°.
    【点睛】
    本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.
    17、40
    【解析】
    首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题.
    【详解】
    解:在Rt△PAB中,∵∠APB=30°,
    ∴PB=2AB,
    由题意BC=2AB,
    ∴PB=BC,
    ∴∠C=∠CPB,
    ∵∠ABP=∠C+∠CPB=60°,
    ∴∠C=30°,
    ∴PC=2PA,
    ∵PA=AB•tan60°,
    ∴PC=2×20×=40(km),
    故答案为40.
    【点睛】
    本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.
    18、1
    【解析】
    一组数据中出现次数最多的数据叫做众数,由此可得出答案.
    【详解】
    ∵一组数据1,3,5,x,1,5的众数和中位数都是1,
    ∴x=1,
    故答案为1.
    【点睛】
    本题考查了众数的知识,解答本题的关键是掌握众数的定义.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)(2)(-6,0)或(-2,0).
    【解析】
    分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
    (2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t的方程,则可求得P点坐标.
    详解:(1)把A点坐标代入y=x+2,可得:3=m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=;
    (2)在y=x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=×3|t+4|.∵△ACP的面积为3,∴×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).
    点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.
    20、(1)∠D=32°;(2)①BE=;②
    【解析】
    (Ⅰ)连接OC, CD为切线,根据切线的性质可得∠OCD=90°,根据圆周角定理可得∠AOC=2∠ABC=29°×2=58°,根据直角三角形的性质可得∠D的大小.
    (Ⅱ)①根据∠D=30°,得到∠DOC=60°,根据∠BAO=15°,可以得出∠AOB=150°,进而证明△OBC为等腰直角三角形,根据等腰直角三角形的性质得出
    根据圆周角定理得出根据含角的直角三角形的性质即可求出BE的长;
    ②根据四边形ABCD的面积=S△OBC+S△OCD﹣S△OAB进行计算即可.
    【详解】
    (Ⅰ)连接OC,
    ∵CD为切线,
    ∴OC⊥CD,
    ∴∠OCD=90°,
    ∵∠AOC=2∠ABC=29°×2=58°,
    ∴∠D=90°﹣58°=32°;
    (Ⅱ)①连接OB,
    在Rt△OCD中,∵∠D=30°,
    ∴∠DOC=60°,
    ∵∠BAO=15°,
    ∴∠OBA=15°,
    ∴∠AOB=150°,
    ∴∠OBC=150°﹣60°=90°,
    ∴△OBC为等腰直角三角形,


    在Rt△CBE中,

    ②作BH⊥OA于H,如图,
    ∵∠BOH=180°﹣∠AOB=30°,

    ∴四边形ABCD的面积=S△OBC+S△OCD﹣S△OAB


    【点睛】
    考查切线的性质,圆周角定理,等腰直角三角形的判定与性质,含角的等腰直角三角形的性质,三角形的面积公式等,题目比较典型,综合性比较强,难度适中.
    21、(1)150人;(2)补图见解析;(3)144°;(4)300盒.
    【解析】
    (1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.
    (2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.
    (3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.
    【详解】
    解:(1)本次调查的学生有30÷20%=150人;
    (2)C类别人数为150﹣(30+45+15)=60人,
    补全条形图如下:

    (3)扇形统计图中C对应的中心角度数是360°×=144°
    故答案为144°
    (4)600×()=300(人),
    答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.
    【点睛】
    本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.
    22、(1) 证明见解析;(2) 证明见解析.
    【解析】
    分析:(1)由AD∥BC可得出∠DAE=∠AEB,结合∠DCB=∠DAE可得出∠DCB=∠AEB,进而可得出AE∥DC、△AMF∽△CMD,根据相似三角形的性质可得出=,根据AD∥BC,可得出△AMD∽△CMB,根据相似三角形的性质可得出=,进而可得出=,即MD2=MF•MB;
    (2)设FM=a,则BF=3a,BM=4a.由(1)的结论可求出MD的长度,代入DF=DM+MF可得出DF的长度,由AD∥BC,可得出△AFD∽△△EFB,根据相似三角形的性质可得出AF=EF,利用“对角线互相平分的四边形是平行四边形”即可证出四边形ABED是平行四边形.
    详解:(1)∵AD∥BC,∴∠DAE=∠AEB.∵∠DCB=∠DAE,∴∠DCB=∠AEB,∴AE∥DC,∴△AMF∽△CMD,∴=.
    ∵AD∥BC,∴△AMD∽△CMB,∴==,即MD2=MF•MB.
    (2)设FM=a,则BF=3a,BM=4a.
    由MD2=MF•MB,得:MD2=a•4a,∴MD=2a,∴DF=BF=3a.
    ∵AD∥BC,∴△AFD∽△△EFB,∴==1,∴AF=EF,∴四边形ABED是平行四边形.

    点睛:本题考查了相似三角形的判定与性质、平行四边形的判定、平行线的性质以及矩形,解题的关键是:(1)利用相似三角形的性质找出=、=;(2)牢记“对角线互相平分的四边形是平行四边形”.
    23、(1)如图所示见解析,(2)当半径为6时,该正六边形的面积为
    【解析】
    试题分析:
    (1)先画一半径为a的圆,再作所画圆的六等分点,如图所示,连接所得六等分点,作出两个等边三角形即可;
    (2)如下图,连接OA、OB、OC、OD,作OE⊥AB于点E,由已知条件先求出AB和OE的长,再求出CD的长,即可求得△OCD的面积,这样即可由S阴影=6S△OCD求出阴影部分的面积了.
    试题解析:
    (1)所作图形如下图所示:

    (2)如下图,连接OA、OB、OC、OD,作OE⊥AB于点E,则由题意可得:OA=OB=6,∠AOB=120°,∠OEB=90°,AE=BE,△BOC,△AOD都是等腰三角形,△OCD的三边三角形,
    ∴∠ABO=30°,BC=OC=CD=AD,
    ∴BE=OB·cos30°=,OE=3,
    ∴AB=,
    ∴CD=,
    ∴S△OCD=,
    ∴S阴影=6S△OCD=.

    24、(1)等腰(2)(3)存在,
    【解析】解:(1)等腰
    (2)∵抛物线的“抛物线三角形”是等腰直角三角形,
    ∴该抛物线的顶点满足.
    ∴.
    (3)存在.
    如图,作△与△关于原点中心对称,

    则四边形为平行四边形.
    当时,平行四边形为矩形.
    又∵,
    ∴△为等边三角形.
    作,垂足为.
    ∴.
    ∴.
    ∴.
    ∴,.
    ∴,.
    设过点三点的抛物线,则
    解之,得
    ∴所求抛物线的表达式为.
    25、 (1)y=10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.
    【解析】
    (1)由待定系数法即可得到函数的解析式;
    (2)根据销售量×每千克利润=总利润列出方程求解即可;
    (3)根据销售量×每千克利润=总利润列出函数解析式求解即可.
    【详解】
    (1)设y与x之间的函数关系式为:y=kx+b,
    把(2,120)和(4,140)代入得,,
    解得:,
    ∴y与x之间的函数关系式为:y=10x+100;
    (2)根据题意得,(60﹣40﹣x)(10x+100)=2090,
    解得:x=1或x=9,
    ∵为了让顾客得到更大的实惠,
    ∴x=9,
    答:这种干果每千克应降价9元;
    (3)该干果每千克降价x元,商贸公司获得利润是w元,
    根据题意得,w=(60﹣40﹣x)(10x+100)=﹣10x2+100x+2000,
    ∴w=﹣10(x﹣5)2+2250,
    ∵a=-10,∴当x=5时,
    故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.
    【点睛】
    本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.
    26、(4)60;(4)作图见试题解析;(4)4.
    【解析】
    试题分析:(4)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;
    (4)利用(4)中所求得出喜欢艺体类的学生数进而画出图形即可;
    (4)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数.
    试题解析:(4)被调查的学生人数为:44÷40%=60(人);
    (4)喜欢艺体类的学生数为:60-44-44-46=8(人),
    如图所示:

    全校最喜爱文学类图书的学生约有:4400×=4(人).
    考点:4.条形统计图;4.用样本估计总体;4.扇形统计图.
    27、(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.
    【解析】
    (1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元可列方程18x+12(20﹣x)=300,解方程即可;
    (2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.
    【详解】
    (1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,
    根据题意得:18x+12(20﹣x)=300,
    解得:x=10,
    则20﹣x=20﹣10=10,
    则甲、乙两种型号的产品分别为10万只,10万只;
    (2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,
    根据题意得:13y+8.8(20﹣y)≤239,
    解得:y≤15,
    根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,
    当y=15时,W最大,最大值为91万元.
    所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.
    考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.

    相关试卷

    江西省丰城市重点达标名校2022年十校联考最后数学试题含解析: 这是一份江西省丰城市重点达标名校2022年十校联考最后数学试题含解析,共18页。试卷主要包含了答题时请按要求用笔,一、单选题,若点A等内容,欢迎下载使用。

    2022年湖南长沙市岳麓区重点达标名校中考数学模拟试题含解析: 这是一份2022年湖南长沙市岳麓区重点达标名校中考数学模拟试题含解析,共17页。试卷主要包含了下列计算正确的是,下列说法正确的是,如图的立体图形,从左面看可能是等内容,欢迎下载使用。

    2022届江西省安远县重点达标名校十校联考最后数学试题含解析: 这是一份2022届江西省安远县重点达标名校十校联考最后数学试题含解析,共23页。试卷主要包含了答题时请按要求用笔,﹣18的倒数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map