湖南长沙长郡梅溪湖中学2022年中考数学猜题卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.如图,在△ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判定ED//BC的是( )
A. B.
C. D.
2.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )
A. B. C. D.
3.如图,△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于( )
A.3:1 B.4:1 C.5:2 D.7:2
4.下列方程有实数根的是( )
A. B.
C.x+2x−1=0 D.
5.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( )
A.205万 B. C. D.
6.一副直角三角板如图放置,其中,,,点F在CB的延长线上若,则等于( )
A.35° B.25° C.30° D.15°
7.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为( )元.
A.+4 B.﹣9 C.﹣4 D.+9
8.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是 ( )
A.平均数 B.中位数 C.众数 D.方差
9.设0<k<2,关于x的一次函数y=(k-2)x+2,当1≤x≤2时,y的最小值是( )
A.2k-2 B.k-1 C.k D.k+1
10.如图是小明在物理实验课上用量筒和水测量铁块A的体积实验,小明在匀速向上将铁块提起,直至铁块完全露出水面一定高度的过程中,则下图能反映液面高度h与铁块被提起的时间t之间的函数关系的大致图象是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是_____.
12.若方程 x2+(m2﹣1)x+1+m=0的两根互为相反数,则 m=______
13.如果=k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.
14.如图,四边形ACDF是正方形,和都是直角,且点三点共线,,则阴影部分的面积是__________.
15.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.
16.计算:|-3|-1=__.
三、解答题(共8题,共72分)
17.(8分)如图,在△ABC中,BC=6,AB=AC,E,F分别为AB,AC上的点(E,F不与A重合),且EF∥BC.将△AEF沿着直线EF向下翻折,得到△A′EF,再展开.
(1)请判断四边形AEA′F的形状,并说明理由;
(2)当四边形AEA′F是正方形,且面积是△ABC的一半时,求AE的长.
18.(8分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.
19.(8分)(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)
(2)(m﹣1﹣).
20.(8分)先化简,然后从中选出一个合适的整数作为的值代入求值.
21.(8分)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.求第一批悠悠球每套的进价是多少元;如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?
22.(10分)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.
(1)求证:AC平分∠DAO.
(2)若∠DAO=105°,∠E=30°
①求∠OCE的度数;
②若⊙O的半径为2,求线段EF的长.
23.(12分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.
(1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ;
(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.
九宫格
24.某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元 求甲、乙型号手机每部进价为多少元? 该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案 售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据平行线分线段成比例定理推理的逆定理,对各选项进行逐一判断即可.
【详解】
A. 当时,能判断;
B. 当时,能判断;
C. 当时,不能判断;
D. 当时,,能判断.
故选:C.
【点睛】
本题考查平行线分线段成比例定理推理的逆定理,根据定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.能根据定理判断线段是否为对应线段是解决此题的关键.
2、A
【解析】
根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决.
【详解】
由题意可得,
,
故选A.
【点睛】
本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
3、A
【解析】
利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.
【详解】
连接DO,交AB于点F,
∵D是的中点,
∴DO⊥AB,AF=BF,
∵AB=8,
∴AF=BF=4,
∴FO是△ABC的中位线,AC∥DO,
∵BC为直径,AB=8,AC=6,
∴BC=10,FO=AC=1,
∴DO=5,
∴DF=5-1=2,
∵AC∥DO,
∴△DEF∽△CEA,
∴,
∴==1.
故选:A.
【点睛】
此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.
4、C
【解析】
分析:根据方程解的定义,一一判断即可解决问题;
详解:A.∵x4>0,∴x4+2=0无解;故本选项不符合题意;
B.∵≥0,∴=﹣1无解,故本选项不符合题意;
C.∵x2+2x﹣1=0,△=8=4=12>0,方程有实数根,故本选项符合题意;
D.解分式方程=,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意.
故选C.
点睛:本题考查了无理方程、根的判别式、高次方程、分式方程等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
5、C
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】2 050 000将小数点向左移6位得到2.05,
所以2 050 000用科学记数法表示为:20.5×106,
故选C.
【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
6、D
【解析】
直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案.
【详解】
解:由题意可得:∠EDF=30°,∠ABC=45°,
∵DE∥CB,
∴∠BDE=∠ABC=45°,
∴∠BDF=45°-30°=15°.
故选D.
【点睛】
此题主要考查了平行线的性质,根据平行线的性质得出∠BDE的度数是解题关键.
7、B
【解析】
收入和支出是两个相反的概念,故两个数字分别为正数和负数.
【详解】
收入13元记为+13元,那么支出9元记作-9元
【点睛】
本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.
8、D
【解析】
根据方差反映数据的波动情况即可解答.
【详解】
由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.
故选D.
【点睛】
本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
9、A
【解析】
先根据0<k<1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.
【详解】
∵0<k<1,
∴k-1<0,
∴此函数是减函数,
∵1≤x≤1,
∴当x=1时,y最小=1(k-1)+1=1k-1.
故选A.
【点睛】
本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.
10、B
【解析】
根据题意,在实验中有3个阶段,
①、铁块在液面以下,液面得高度不变;
②、铁块的一部分露出液面,但未完全露出时,液面高度降低;
③、铁块在液面以上,完全露出时,液面高度又维持不变;
分析可得,B符合描述;
故选B.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x>﹣1.
【解析】
根据函数y=3x+b和y=ax-3的图象交于点P(-1,-5),然后根据图象即可得到不等式 3x+b>ax-3的解集.
【详解】
解:∵函数y=3x+b和y=ax-3的图象交于点P(-1,-5),
∴不等式 3x+b>ax-3的解集是x>-1,
故答案为:x>-1.
【点睛】
本题考查一次函数与一元一次不等式、一次函数的图象,熟练掌握是解题的关键.
12、﹣1
【解析】
根据“方程 x2+(m2﹣1)x+1+m=0 的两根互为相反数”,利用一元二次方程根与系数的关系,列出关于 m 的等式,解之,再把 m 的值代入原方程, 找出符合题意的 m 的值即可.
【详解】
∵方程 x2+(m2﹣1)x+1+m=0 的两根互为相反数,
∴1﹣m2=0,
解得:m=1 或﹣1,
把 m=1代入原方程得:
x2+2=0,
该方程无解,
∴m=1不合题意,舍去,
把 m=﹣1代入原方程得:
x2=0,
解得:x1=x2=0,(符合题意),
∴m=﹣1,
故答案为﹣1.
【点睛】
本题考查了根与系数的关系,正确掌握一元二次方程两根之和,两个之积与系数之间的关系式解题的关键.若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.
13、3
【解析】
∵=k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),
∵a+c+e=3(b+d+f),∴k=3,
故答案为:3.
14、8
【解析】
【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.
【详解】∵四边形ACDF是正方形,
∴AC=FA,∠CAF=90°,
∴∠CAE+∠FAB=90°,
∵∠CEA=90°,∴∠CAE+∠ACE=90°,
∴∠ACE=∠FAB,
又∵∠AEC=∠FBA=90°,
∴△AEC≌△FBA,
∴CE=AB=4,
∴S阴影==8,
故答案为8.
【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.
15、1.
【解析】
试题分析:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB===13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.
考点:旋转的性质.
16、2
【解析】
根据有理数的加减混合运算法则计算.
【详解】
解:|﹣3|﹣1=3-1=2.
故答案为2.
【点睛】
考查的是有理数的加减运算、乘除运算,掌握它们的运算法则是解题的关键.
三、解答题(共8题,共72分)
17、(1)四边形AEA′F为菱形.理由见解析;(2)1.
【解析】
(1)先证明AE=AF,再根据折叠的性质得AE=A′E,AF=A′F,然后根据菱形的判定方法可判断四边形AEA′F为菱形;(2)四先利用四边形AEA′F是正方形得到∠A=90°,则AB=AC=BC=6,然后利用正方形AEA′F的面积是△ABC的一半得到AE2=••6•6,然后利用算术平方根的定义求AE即可.
【详解】
(1)四边形AEA′F为菱形.
理由如下:
∵AB=AC,
∴∠B=∠C,
∵EF∥BC,
∴∠AEF=∠B,∠AFE=∠C,
∴∠AEF=∠AFE,
∴AE=AF,
∵△AEF沿着直线EF向下翻折,得到△A′EF,
∴AE=A′E,AF=A′F,
∴AE=A′E=AF=A′F,
∴四边形AEA′F为菱形;
(2)∵四边形AEA′F是正方形,
∴∠A=90°,
∴△ABC为等腰直角三角形,
∴AB=AC=BC=×6=6,
∵正方形AEA′F的面积是△ABC的一半,
∴AE2=••6•6,
∴AE=1.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
18、(1)15人;(2)补图见解析.(3).
【解析】
(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;
(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;
(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.
【详解】
解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;
(2)A2的人数为15﹣2﹣6﹣4=3(人)
补全图形,如图所示,
A1所在圆心角度数为:×360°=48°;
(3)画出树状图如下:
共6种等可能结果,符合题意的有3种
∴选出一名男生一名女生的概率为:P=.
【点睛】
本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.
19、(1) ;(2)
【解析】
试题分析:(1)先去括号,再合并同类项即可;
(2)先计算括号里的,再将除法转换在乘法计算.
试题解析:
(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)
=a2﹣2ab+b2﹣a2+2ab+4a2﹣b2
=4a2;
(2).
=
=
=
=.
20、-1
【解析】
先化简,再选出一个合适的整数代入即可,要注意a的取值范围.
【详解】
解:
,
当时,原式.
【点睛】
本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.
21、(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是1元.
【解析】
分析:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据数量=总价÷单价结合第二批购进数量是第一批数量的1.5倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设每套悠悠球的售价为y元,根据销售收入-成本=利润结合全部售完后总利润不低于25%,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.
详解:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,
根据题意得:
,
解得:x=25,
经检验,x=25是原分式方程的解.
答:第一批悠悠球每套的进价是25元.
(2)设每套悠悠球的售价为y元,
根据题意得:500÷25×(1+1.5)y-500-900≥(500+900)×25%,
解得:y≥1.
答:每套悠悠球的售价至少是1元.
点睛:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程是解题的关键;(2)根据各数量之间的关系,正确列出一元一次不等式.
22、(1)证明见解析;(2)①∠OCE=45°;②EF =-2.
【解析】
【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.
又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.
(2)①因为 AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,∠EOC=∠DAO=105°,在 中,∠E=30°,利用内角和定理,得:∠OCE=45°.
②作OG⊥CE于点G,根据垂径定理可得FG=CG, 因为OC=,∠OCE=45°.等腰直角三角形的斜边是腰长的 倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=, 则EF=GE-FG=-2.
【试题解析】
(1)∵直线与⊙O相切,∴OC⊥CD.
又∵AD⊥CD,∴AD//OC.
∴∠DAC=∠OCA.
又∵OC=OA,∴∠OAC=∠OCA.
∴∠DAC=∠OAC.
∴AC平分∠DAO.
(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°
∵∠E=30°,∴∠OCE=45°.
②作OG⊥CE于点G,可得FG=CG
∵OC=,∠OCE=45°.∴CG=OG=2.
∴FG=2.
∵在Rt△OGE中,∠E=30°,∴GE=.
∴EF=GE-FG=-2.
【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.
23、(1);(2)
【解析】
试题分析:(1)利用概率公式直接计算即可;
(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.
试题解析:
(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为;
(2)画树形图得:
由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.
考点:列表法与树状图法;概率公式.
24、 (1) 甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元;(2) 共有四种方案;(3) 当m=80时,w始终等于8000,取值与a无关
【解析】
(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元根据题意列方程组求出x、y的值即可;(2)设购进甲种型号手机a部,这购进乙种型号手机(20-a)部,根据题意列不等式组求出a的取值范围,根据a为整数求出a的值即可明确方案(3)
利用利润=单个利润数量,用a表示出利润W,当利润与a无关时,(2)中的方案利润相同,求出m值即可;
【详解】
(1) 设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,
,解得,
(2) 设购进甲种型号手机a部,这购进乙种型号手机(20-a)部,
17400≤1000a+800(20-a)≤18000,解得7≤a≤10,
∵a为自然数,
∴有a为7、8、9、10共四种方案,
(3) 甲种型号手机每部利润为1000×40%=400,
w=400a+(1280-800-m)(20-a)=(m-80)a+9600-20m,
当m=80时,w始终等于8000,取值与a无关.
【点睛】
本题考查了列二元一次方程组解实际问题的运用,根据题意找出等量关系列出方程是解题关键.
2023-2024学年湖南长沙长郡梅溪湖中学八上数学期末达标检测试题含答案: 这是一份2023-2024学年湖南长沙长郡梅溪湖中学八上数学期末达标检测试题含答案,共7页。试卷主要包含了若,则的值为等内容,欢迎下载使用。
湖南长沙长郡梅溪湖中学2022-2023学年数学七下期末质量检测模拟试题含答案: 这是一份湖南长沙长郡梅溪湖中学2022-2023学年数学七下期末质量检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,二次根式中的x的取值范围是,下列函数中是一次函数的是等内容,欢迎下载使用。
2022年湖南长沙长郡梅溪湖中学中考数学模拟试题含解析: 这是一份2022年湖南长沙长郡梅溪湖中学中考数学模拟试题含解析,共18页。试卷主要包含了平面直角坐标系中,若点A等内容,欢迎下载使用。