年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    湖南省邵阳市邵东县市级名校2022年中考数学适应性模拟试题含解析

    湖南省邵阳市邵东县市级名校2022年中考数学适应性模拟试题含解析第1页
    湖南省邵阳市邵东县市级名校2022年中考数学适应性模拟试题含解析第2页
    湖南省邵阳市邵东县市级名校2022年中考数学适应性模拟试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省邵阳市邵东县市级名校2022年中考数学适应性模拟试题含解析

    展开

    这是一份湖南省邵阳市邵东县市级名校2022年中考数学适应性模拟试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,已知等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.对于实数x,我们规定表示不大于x的最大整数,例如,,,若,则x的取值可以是( )
    A.40 B.45 C.51 D.56
    2.下列天气预报中的图标,其中既是轴对称图形又是中心对称图形的是(  )
    A. B. C. D.
    3.下列二次根式中,为最简二次根式的是(  )
    A. B. C. D.
    4.如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是(  )

    A. B. C. D.
    5.如图,直线a,b被直线c所截,若a∥b,∠1=50°,∠3=120°,则∠2的度数为(  )

    A.80° B.70° C.60° D.50°
    6.等腰三角形的两边长分别为5和11,则它的周长为( )
    A.21 B.21或27 C.27 D.25
    7.如图,等腰直角三角板ABC的斜边AB与量角器的直径重合,点D是量角器上60°刻度线的外端点,连接CD交AB于点E,则∠CEB的度数为( )

    A.60° B.65° C.70° D.75°
    8.2017年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为(  )
    A.7.49×107 B.74.9×106 C.7.49×106 D.0.749×107
    9.已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=(k≠0)的图象恰好经过点C和点D,则k的值为(  )

    A. B. C. D.
    10.如图,、是的切线,点在上运动,且不与,重合,是直径.,当时,的度数是(  )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少50%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,求该地区空闲时段民用电的单价比高峰时段的用电单价低的百分率是_____.
    12.今年“五一”节日期间,我市四个旅游景区共接待游客约303000多人次,这个数据用科学记数法可记为_____.
    13.新田为实现全县“脱贫摘帽”,2018年2月已统筹整合涉农资金235000000元,撬动800000000元金融资本参与全县脱贫攻坚工作,请将235000000用科学记数法表示为___.
    14.若正六边形的内切圆半径为2,则其外接圆半径为__________.
    15.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.

    16.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.

    17.方程的解是_____.
    三、解答题(共7小题,满分69分)
    18.(10分)如图①,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形.

    (1)试探究线段AE与CG的关系,并说明理由.
    (2)如图②若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=1.
    ①线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.
    ②当△CDE为等腰三角形时,求CG的长.
    19.(5分)如图,AB为⊙O直径,过⊙O外的点D作DE⊥OA于点E,射线DC切⊙O于点C、交AB的延长线于点P,连接AC交DE于点F,作CH⊥AB于点H.
    (1)求证:∠D=2∠A;
    (2)若HB=2,cosD=,请求出AC的长.

    20.(8分)计算:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1.
    21.(10分)地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:
    初一:76 88 93 65 78 94 89 68 95 50
    89 88 89 89 77 94 87 88 92 91
    初二:74 97 96 89 98 74 69 76 72 78
    99 72 97 76 99 74 99 73 98 74
    (1)根据上面的数据,将下列表格补充完整;
    整理、描述数据:
    成绩x
    人数
    班级





    初一
    1
    2
    3

    6
    初二
    0
    1
    10
    1
    8
    (说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下为不合格)
    分析数据:
    年级
    平均数
    中位数
    众数
    初一
    84
    88.5

    初二
    84.2

    74
    (2)得出结论:
    你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).
    22.(10分)某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示.
    (1)销售单价为多少元时,该种商品每天的销售利润最大? 最大利润为多少元?
    (2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?

    23.(12分)计算:sin30°﹣+(π﹣4)0+|﹣|.
    24.(14分)如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)证明:四边形AHBG是菱形;若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    解:根据定义,得

    解得:.
    故选C.
    2、A
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,也是中心对称图形,符合题意;
    B、是轴对称图形,不是中心对称图形,不合题意;
    C、不是轴对称图形,也不是中心对称图形,不合题意;
    D、不是轴对称图形,不是中心对称图形,不合题意.
    故选:A.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    3、B
    【解析】
    最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是( 整式 )(分母中不含根号)2.被开方数中不含能开提尽方的( 因数 )或( 因式 ).
    【详解】
    A. =3, 不是最简二次根式;
    B. ,最简二次根式;
    C. =,不是最简二次根式;
    D. =,不是最简二次根式.
    故选:B
    【点睛】
    本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.
    4、B
    【解析】
    先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.
    【详解】
    ∵△DEF是△AEF翻折而成,
    ∴△DEF≌△AEF,∠A=∠EDF,
    ∵△ABC是等腰直角三角形,
    ∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,

    ∴∠BED=∠CDF,
    设CD=1,CF=x,则CA=CB=2,
    ∴DF=FA=2-x,
    ∴在Rt△CDF中,由勾股定理得,
    CF2+CD2=DF2,
    即x2+1=(2-x)2,
    解得:x=,
    ∴sin∠BED=sin∠CDF=.
    故选B.
    【点睛】
    本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.
    5、B
    【解析】
    直接利用平行线的性质得出∠4的度数,再利用对顶角的性质得出答案.
    【详解】
    解:

    ∵a∥b,∠1=50°,
    ∴∠4=50°,
    ∵∠3=120°,
    ∴∠2+∠4=120°,
    ∴∠2=120°-50°=70°.
    故选B.
    【点睛】
    此题主要考查了平行线的性质,正确得出∠4的度数是解题关键.
    6、C
    【解析】
    试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.
    解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;
    当腰取11,则底边为5,则三角形的周长=11+11+5=1.
    故选C.
    考点:等腰三角形的性质;三角形三边关系.
    7、D
    【解析】
    解:连接OD
    ∵∠AOD=60°,
    ∴ACD=30°.
    ∵∠CEB是△ACE的外角,
    ∴△CEB=∠ACD+∠CAO=30°+45°=75°
    故选:D

    8、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    7490000=7.49×106.
    故选C.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    9、A
    【解析】
    试题分析:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图所示.
    设BD=a,则OC=3a.
    ∵△AOB为边长为1的等边三角形,∴∠COE=∠DBF=10°,OB=1.
    在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE= = a,∴点C(a, a).
    同理,可求出点D的坐标为(1﹣a,a).
    ∵反比例函数(k≠0)的图象恰好经过点C和点D,∴k=a×a=(1﹣a)×a,∴a=,k=.故选A.

    10、B
    【解析】
    连接OB,由切线的性质可得,由邻补角相等和四边形的内角和可得,再由圆周角定理求得,然后由平行线的性质即可求得.
    【详解】
    解,连结OB,

    ∵、是的切线,
    ∴,,则,
    ∵四边形APBO的内角和为360°,即,
    ∴,
    又∵,,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    故选:B.
    【点睛】
    本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答.

    二、填空题(共7小题,每小题3分,满分21分)
    11、60%
    【解析】
    设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,根据总价=单价×数量结合6月份的电费却比5月份的电费少25%,即可得出关于x,y的二元一次方程,解之即可得出x,y之间的关系,进而即可得出结论.
    【详解】
    设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,
    依题意,得:(1﹣25%)(ax+2ay)=2ax+ay,
    解得:x=0.4y,
    ∴该地区空闲时段民用电的单价比高峰时段的用电单价低×100%=60%.
    故答案为60%.
    【点睛】
    本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.
    12、3.03×101
    【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于303000有6位整数,所以可以确定n=6-1=1.
    详解:303000=3.03×101,
    故答案为:3.03×101.
    点睛:此题考查科学记数法表示较大的数的方法,准确确定a与n的值是解题的关键.
    13、2.35×1
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:将235000000用科学记数法表示为:2.35×1.
    故答案为:2.35×1.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    14、
    【解析】
    根据题意画出草图,可得OG=2,,因此利用三角函数便可计算的外接圆半径OA.
    【详解】

    解:如图,连接、,作于;
    则,
    ∵六边形正六边形,
    ∴是等边三角形,
    ∴,
    ∴,
    ∴正六边形的内切圆半径为2,则其外接圆半径为.
    故答案为.
    【点睛】
    本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.
    15、
    【解析】
    首先利用勾股定理计算出AB2,BC2,AC2,再根据勾股定理逆定理可证明∠BCA=90°,然后得到∠ABC的度数,再利用特殊角的三角函数可得∠ABC的正弦值.
    【详解】
    解:
    连接AC

    AB2=32+12=10,BC2=22+12=5,AC2=22+12=5,
    ∴AC=CB,BC2+AC2=AB2,
    ∴∠BCA=90°,
    ∴∠ABC=45°,
    ∴∠ABC的正弦值为.
    故答案为:.
    【点睛】
    此题主要考查了锐角三角函数,以及勾股定理逆定理,关键是掌握特殊角的三角函数.
    16、.
    【解析】
    根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.
    【详解】
    连续左转后形成的正多边形边数为:,
    则左转的角度是.
    故答案是:.
    【点睛】
    本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.
    17、1
    【解析】
    ,
    ,
    x=1,
    代入最简公分母,x=1是方程的解.

    三、解答题(共7小题,满分69分)
    18、(1)AE=CG,AE⊥CG,理由见解析;(2)①位置关系保持不变,数量关系变为;
    理由见解析;②当△CDE为等腰三角形时,CG的长为或或.
    【解析】
    试题分析:证明≌即可得出结论.
    ①位置关系保持不变,数量关系变为证明根据相似的性质即可得出.
    分成三种情况讨论即可.
    试题解析:(1)
    理由是:如图1,∵四边形EFGD是正方形,


    ∵四边形ABCD是正方形,


    ∴≌



    ∴ 即
    (2)①位置关系保持不变,数量关系变为
    理由是:如图2,连接EG、DF交于点O,连接OC,

    ∵四边形EFGD是矩形,

    Rt中,OG=OF,
    Rt中,

    ∴D、E、F、C、G在以点O为圆心的圆上,

    ∴DF为的直径,

    ∴EG也是的直径,
    ∴∠ECG=90°,即






    ②由①知:
    ∴设
    分三种情况:
    (i)当时,如图3,过E作于H,则EH∥AD,


    ∴ 由勾股定理得:



    (ii)当时,如图1,过D作于H,










    (iii)当时,如图5,




    综上所述,当为等腰三角形时,CG的长为或或.
    点睛:两组角对应,两三角形相似.
    19、(1)证明见解析;(2)AC=4.
    【解析】
    (1)连接,根据切线的性质得到,根据垂直的定义得到,得到,然后根据圆周角定理证明即可;
    (2)设的半径为,根据余弦的定义、勾股定理计算即可.
    【详解】
    (1)连接.
    ∵射线切于点,.
    ,,,,,由圆周角定理得:,;
    (2)由(1)可知:,,,,,设的半径为,则,在中,,,,∴由勾股定理可知:,.
    在中,,由勾股定理可知:.

    【点睛】
    本题考查了切线的性质、圆周角定理以及解直角三角形,掌握切线的性质定理、圆周角定理、余弦的定义是解题的关键.
    20、-1
    【解析】
    分析:根据零次幂、绝对值以及负指数次幂的计算法则求出各式的值,然后进行求和得出答案.
    详解:解:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1=1﹣3+(﹣1)+2=﹣1.
    点睛:本题主要考查的是实数的计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.
    21、(1)1,2,19;(2)初一年级掌握生态环保知识水平较好.
    【解析】
    (1)根据初一、初二同学的测试成绩以及众数与中位数的定义即可完成表格;
    (2)根据平均数、众数、中位数的统计意义回答.
    【详解】
    (1)补全表格如下:
    整理、描述数据:
    初一成绩x满足10≤x≤19的有:11 19 19 11 19 19 17 11,共1个.
    故答案为:1.

    分析数据:
    在76 11 93 65 71 94 19 61 95 50 19 11 19 19 2 94 17 11 92 91中,19出现的次数最多,故众数为19;
    把初二的抽查成绩从小到大排列为:69 72 72 73 74 74 74 74 76 76 71 19 96 97 97 91 91 99 99 99,第10个数为76,第11个数为71,故中位数为:(76+71)÷2=2.
    故答案为:19,2.

    (2)初一年级掌握生态环保知识水平较好.
    因为两个年级的平均数相差不大,但是初一年级同学的中位数是11.5,众数是19,初二年级同学的中位数是2,众数是74,即初一年级同学的中位数与众数明显高于初二年级同学的成绩,所以初一年级掌握生态环保知识水平较好.
    【点睛】
    本题考查了频数(率)分布表,众数、中位数以及平均数.掌握众数、中位数以及平均数的定义是解题的关键.
    22、(1)10,1;(2).
    【解析】
    (1)将点代入中,求出函数解析式,再根据二次函数的性质求出最大值即可;
    (2)求出对称轴为直线,可知点关于对称轴的对称点是,再根据图象判断出x的取值范围即可.
    【详解】
    解:(1)图象过点,

    解得


    的顶点坐标为.

    ∴当时,最大=1.
    答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元.
    (2)∵函数图象的对称轴为直线,
    可知点关于对称轴的对称点是,
    又∵函数图象开口向下,
    ∴当时,.
    答:销售单价不少于8元且不超过12元时,该种商品每天的销售利润不低于21元.
    【点睛】
    本题考查了待定系数法求二次函数解析式以及二次函数的性质,解题的关键是熟悉待定系数法以及二次函数的性质.
    23、1.
    【解析】
    分析:原式利用特殊角角的三角函数值,平方根定义,零指数幂法则,以及绝对值的代数意义化简,计算即可求出值.
    详解:原式=﹣2+1+=1.
    点睛:本题考查了实数的运算,熟练掌握运算法则是解答本题的关键.
    24、 (1)详见解析;(2)详见解析;(3)需要添加的条件是AB=BC.
    【解析】
    试题分析:(1)可根据已知条件,或者图形的对称性合理选择全等三角形,如△ABC≌△BAD,利用SAS可证明.
    (2)由已知可得四边形AHBG是平行四边形,由(1)可知∠ABD=∠BAC,得到△GAB为等腰三角形,▱AHBG的两邻边相等,从而得到平行四边形AHBG是菱形.
    试题解析:
    (1)解:△ABC≌△BAD.
    证明:∵AD=BC,
    ∠ABC=∠BAD=90°,
    AB=BA,
    ∴△ABC≌△BAD(SAS).
    (2)证明:∵AH∥GB,BH∥GA,
    ∴四边形AHBG是平行四边形.
    ∵△ABC≌△BAD,
    ∴∠ABD=∠BAC.
    ∴GA=GB.
    ∴平行四边形AHBG是菱形.
    (3)需要添加的条件是AB=BC.
    点睛:本题考查全等三角形,四边形等几何知识,考查几何论证和思维能力,第(3)小题是开放题,答案不唯一.

    相关试卷

    郑州市级名校2022-2023学年中考数学适应性模拟试题含解析:

    这是一份郑州市级名校2022-2023学年中考数学适应性模拟试题含解析,共20页。

    2022年山西省临汾市市级名校中考数学适应性模拟试题含解析:

    这是一份2022年山西省临汾市市级名校中考数学适应性模拟试题含解析,共22页。试卷主要包含了若2<<3,则a的值可以是,化简,下列各式中正确的是,下列四个多项式,能因式分解的是等内容,欢迎下载使用。

    2022年江西省会昌县市级名校中考数学适应性模拟试题含解析:

    这是一份2022年江西省会昌县市级名校中考数学适应性模拟试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列实数中,结果最大的是,如图是反比例函数,下列方程中,没有实数根的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map