湖南省岳阳市岳阳县2022年中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )
A.30° B.36° C.54° D.72°
2.下列图形中,属于中心对称图形的是( )
A. B.
C. D.
3.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是( )
A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<0
4.对于实数x,我们规定表示不大于x的最大整数,例如,,,若,则x的取值可以是( )
A.40 B.45 C.51 D.56
5.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=,那么点C的位置可以在( )
A.点C1处 B.点C2处 C.点C3处 D.点C4处
6.a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是( )
A. B.
C. D.
7.某班 30名学生的身高情况如下表:
身高
人数
1
3
4
7
8
7
则这 30 名学生身高的众数和中位数分别是
A., B.,
C., D.,
8.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是( )
A.方程有两个相等的实数根
B.方程有两个不相等的实数根
C.没有实数根
D.无法确定
9.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是( )
A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为2
10.如图所示的几何体的主视图正确的是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为 .
12.如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,……,依次下去.则点B6的坐标____________.
13.某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]=[m - i,n - j],并称a+b为该生的位置数.若某生的位置数为10,则当m+n取最小值时,m•n的最大值为_____________.
14.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为 ▲ .
15.如图,AB为半圆的直径,且AB=2,半圆绕点B顺时针旋转40°,点A旋转到A′的位置,则图中阴影部分的面积为_____(结果保留π).
16.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P= 40°,则∠BAC= .
17.学校乒乓球社团有4名男队员和3名女队员,要从这7名队员中随机抽取一男一女组成一队混合双打组合,可组成不同的组合共有_____对.
三、解答题(共7小题,满分69分)
18.(10分)如图,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F.
(1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;
(2)知识探究:
①如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);
②如图丙,在顶点G运动的过程中,若,探究线段EC、CF与BC的数量关系;
(3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=,当>2时,求EC的长度.
19.(5分)如图,在Rt△ABC中,∠C=90°,O、D分别为AB、AC上的点,经过A、D两点的⊙O分别交于AB、AC于点E、F,且BC与⊙O相切于点D.
(1)求证:;
(2)当AC=2,CD=1时,求⊙O的面积.
20.(8分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:
该年级报名参加丙组的人数为 ;该年级报名参加本次活动的总人数 ,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?
21.(10分)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,求的值.
22.(10分)如图所示,在中,,
(1)用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)
(2)连接AP当为多少度时,AP平分.
23.(12分) “六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(1)该校有_____个班级,补全条形统计图;
(2)求该校各班留守儿童人数数据的平均数,众数与中位数;
(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.
24.(14分)解不等式组,请结合题意填空,完成本题的解答.
(1)解不等式①,得 ;
(2)解不等式②,得 ;
(3)把不等式①和②的解集在数轴上表示出来:
(4)原不等式的解集为 .
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
在等腰三角形△ABE中,求出∠A的度数即可解决问题.
【详解】
解:在正五边形ABCDE中,∠A=×(5-2)×180=108°
又知△ABE是等腰三角形,
∴AB=AE,
∴∠ABE=(180°-108°)=36°.
故选B.
【点睛】
本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.
2、B
【解析】
A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
【详解】
A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
B、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;
C、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
D、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
故选B.
【点睛】
本题考查了轴对称与中心对称图形的概念:
中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3、B
【解析】
试题分析:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,
∴k<0,b>0,
故选B.
考点:一次函数的性质和图象
4、C
【解析】
解:根据定义,得
∴
解得:.
故选C.
5、D
【解析】
如图:
∵AB=5,, ∴D=4, ∵, ∴,∴AC=4,
∵在RT△AD中,D,AD=8, ∴A=,故答案为D.
6、D
【解析】
分a>0和a<0两种情况分类讨论即可确定正确的选项
【详解】
当a>0时,函数y= 的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,
当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;
故选D.
【点睛】
本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.
7、A
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据.
【详解】
解:这组数据中,出现的次数最多,故众数为,
共有30人,
第15和16人身高的平均数为中位数,
即中位数为:,
故选:A.
【点睛】
本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大或从大到小的顺序排列,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
8、B
【解析】
试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.
考点:一元二次方程根的判别式.
9、A
【解析】
根据中位数,众数,平均数,方差等知识即可判断;
【详解】
观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.
故选A.
【点睛】
本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.
10、D
【解析】
主视图是从前向后看,即可得图像.
【详解】
主视图是一个矩形和一个三角形构成.故选D.
二、填空题(共7小题,每小题3分,满分21分)
11、9.6×1.
【解析】
将9600000用科学记数法表示为9.6×1.
故答案为9.6×1.
12、 (-1,0)
【解析】
根据已知条件由图中可以得到B1所在的正方形的对角线长为,B2所在的正方形的对角线长为()2,B3所在的正方形的对角线长为()3;B4所在的正方形的对角线长为()4;B5所在的正方形的对角线长为()5;可推出B6所在的正方形的对角线长为()6=1.又因为B6在x轴负半轴,所以B6(-1,0).
解:如图所示
∵正方形OBB1C,
∴OB1=,B1所在的象限为第一象限;
∴OB2=()2,B2在x轴正半轴;
∴OB3=()3,B3所在的象限为第四象限;
∴OB4=()4,B4在y轴负半轴;
∴OB5=()5,B5所在的象限为第三象限;
∴OB6=()6=1,B6在x轴负半轴.
∴B6(-1,0).
故答案为(-1,0).
13、36
【解析】
10=a+b=(m-i)+(n-j)=(m+n)-(i+j)
所以:m+n=10+i+j
当(m+n)取最小值时,(i+j)也必须最小,所以i和j都是2,这样才能(i+j)才能最小,因此:
m+n=10+2=12
也就是:当m+n=12时,m·n最大是多少?这就容易了:
m·n<=36
所以m·n的最大值就是36
14、.
【解析】
待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.
【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(2a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:
∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.
设正方形的边长为b,则b2=9,解得b=3.
∵正方形的中心在原点O,∴直线AB的解析式为:x=2.
∵点P(2a,a)在直线AB上,∴2a=2,解得a=3.∴P(2,3).
∵点P在反比例函数(k>0)的图象上,∴k=2×3=2.
∴此反比例函数的解析式为:.
15、
【解析】
【分析】根据题意可得出阴影部分的面积等于扇形ABA′的面积加上半圆面积再减去半圆面积.
【详解】∵S阴影=S扇形ABA′+S半圆-S半圆
=S扇形ABA′
=
=,
故答案为.
【点睛】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式且能准确识图是解题的关键.
16、20°
【解析】
根据切线的性质可知∠PAC=90°,由切线长定理得PA=PB,∠P=40°,求出∠PAB的度数,用∠PAC﹣∠PAB得到∠BAC的度数.
【详解】
解:∵PA是⊙O的切线,AC是⊙O的直径,
∴∠PAC=90°.
∵PA,PB是⊙O的切线,
∴PA=PB.
∵∠P=40°,
∴∠PAB=(180°﹣∠P)÷2=(180°﹣40°)÷2=70°,
∴∠BAC=∠PAC﹣∠PAB=90°﹣70°=20°.
故答案为20°.
【点睛】
本题考查了切线的性质,根据切线的性质和切线长定理进行计算求出角的度数.
17、1
【解析】
利用树状图展示所有1种等可能的结果数.
【详解】
解:画树状图为:
共有1种等可能的结果数.
故答案为1.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
三、解答题(共7小题,满分69分)
18、(1)证明见解析(2)①线段EC,CF与BC的数量关系为:CE+CF=BC.②CE+CF=BC(3)
【解析】
(1)利用包含60°角的菱形,证明△BAE≌△CAF,可求证;
(2)由特殊到一般,证明△CAE′∽△CGE,从而可以得到EC、CF与BC的数量关系
(3) 连接BD与AC交于点H,利用三角函数BH ,AH,CH的长度,最后求BC长度.
【详解】
解:(1)证明:∵四边形ABCD是菱形,∠BAD=120°,
∴∠BAC=60°,∠B=∠ACF=60°,AB=BC,AB=AC,
∵∠BAE+∠EAC=∠EAC+∠CAF=60°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,
,
∴△BAE≌△CAF,
∴BE=CF,
∴EC+CF=EC+BE=BC,
即EC+CF=BC;
(2)知识探究:
①线段EC,CF与BC的数量关系为:CE+CF=BC.
理由:如图乙,过点A作AE′∥EG,AF′∥GF,分别交BC、CD于E′、F′.
类比(1)可得:E′C+CF′=BC,
∵AE′∥EG,
∴△CAE′∽△CGE
,
,
同理可得:,
,
即;
②CE+CF=BC.
理由如下:
过点A作AE′∥EG,AF′∥GF,分别交BC、CD于E′、F′.
类比(1)可得:E′C+CF′=BC,
∵AE′∥EG,∴△CAE′∽△CAE,
∴,∴CE=CE′,
同理可得:CF=CF′,
∴CE+CF=CE′+CF′=(CE′+CF′)=BC,
即CE+CF=BC;
(3)连接BD与AC交于点H,如图所示:
在Rt△ABH中,
∵AB=8,∠BAC=60°,
∴BH=ABsin60°=8×=,
AH=CH=ABcos60°=8×=4,
∴GH===1,
∴CG=4-1=3,
∴,
∴t=(t>2),
由(2)②得:CE+CF=BC,
∴CE=BC -CF=×8-=.
【点睛】
本题属于相似形综合题,主要考查了全等三角形的判定和性质、菱形的性质,相似三角形的判定和性质等知识的综合运用,解题的关键是灵活运用这些知识解决问题,学会添加辅助线构造相似三角形.
19、(1)证明见解析;(2).
【解析】
(1)连接OD,由BC为圆O的切线,得到OD垂直于BC,再由AC垂直于BC,得到OD与AC平行,利用两直线平行得到一对内错角相等,再由OA=OD,利用等边对等角得到一对角相等,等量代换得到AD为角平分线,利用相等的圆周角所对的弧相等即可得证;
(2)连接ED,在直角三角形ACD中,由AC与CD的长,利用勾股定理求出AD的长,由(1)得出的两个圆周角相等,及一对直角相等得到三角形ACD与三角形ADE相似,由相似得比例求出AE的长,进而求出圆的半径,即可求出圆的面积.
【详解】
证明:连接OD,
∵BC为圆O的切线,
∴OD⊥CB,
∵AC⊥CB,
∴OD∥AC,
∴∠CAD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠CAD=∠OAD,
则 ;
(2)解:连接ED,
在Rt△ACD中,AC=2,CD=1,
根据勾股定理得:AD= ,
∵∠CAD=∠OAD,∠ACD=∠ADE=90°,
∴△ACD∽△ADE,
∴,即AD2=AC•AE,
∴AE=,即圆的半径为 ,
则圆的面积为 .
【点睛】
此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及勾股定理,熟练掌握相关性质是解本题的关键.
20、(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组
【解析】
(1)参加丙组的人数为21人;
(2)21÷10%=10人,则乙组人数=10-21-11=10人,
如图:
(3)设需从甲组抽调x名同学到丙组,
根据题意得:3(11-x)=21+x
解得x=1.
答:应从甲抽调1名学生到丙组
(1)直接根据条形统计图获得数据;
(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;
(3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解
21、
【解析】
根据翻折的性质可得∠BAC=∠EAC,再根据矩形的对边平行可得AB∥CD,根据两直线平行,内错角相等可得∠DCA=∠BAC,从而得到∠EAC=∠DCA,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到△ACF和△EDF相似,根据相似三角形得出对应边成比,设DF=3x,FC=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解.
【详解】
解:∵矩形沿直线AC折叠,点B落在点E处,
∴CE=BC,∠BAC=∠CAE,
∵矩形对边AD=BC,
∴AD=CE,
设AE、CD相交于点F,
在△ADF和△CEF中,
,
∴△ADF≌△CEF(AAS),
∴EF=DF,
∵AB∥CD,
∴∠BAC=∠ACF,
又∵∠BAC=∠CAE,
∴∠ACF=∠CAE,
∴AF=CF,
∴AC∥DE,
∴△ACF∽△DEF,
∴,
设EF=3k,CF=5k,
由勾股定理得CE=,
∴AD=BC=CE=4k,
又∵CD=DF+CF=3k+5k=8k,
∴AB=CD=8k,
∴AD:AB=(4k):(8k)=.
【点睛】
本题考查了翻折变换的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,综合题难度较大,求出△ACF和△DEF相似是解题的关键,也是本题的难点.
22、(1)详见解析;(2)30°.
【解析】
(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;
(2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得∠B的度数,可得答案.
【详解】
(1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,
∵EF为AB的垂直平分线,
∴PA=PB,
∴点P即为所求.
(2)如图,连接AP,
∵,
∴,
∵AP是角平分线,
∴,
∴,
∵,
∴∠PAC+∠PAB+∠B=90°,
∴3∠B=90°,
解得:∠B=30°,
∴当时,AP平分.
【点睛】
本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.
23、(1)16;(2)平均数是3,众数是10,中位数是3;(3)1.
【解析】
(1)根据有7名留守儿童班级有2个,所占的百分比是2.5%,即可求得班级的总个数,再求出有8名留守儿童班级的个数,进而补全条形统计图;
(2)将这组数据按照从小到大排列即可求得统计的这组留守儿童人数数据的平均数、众数和中位数;
(3)利用班级数60乘以(2)中求得的平均数即可.
【详解】
解:(1)该校的班级数是:2÷2.5%=16(个).
则人数是8名的班级数是:16﹣1﹣2﹣6﹣2=5(个).
条形统计图补充如下图所示:
故答案为16;
(2)每班的留守儿童的平均数是:(1×6+2×7+5×8+6×10+2×2)÷16=3
将这组数据按照从小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.
故这组数据的众数是10,中位数是(8+10)÷2=3.
即统计的这组留守儿童人数数据的平均数是3,众数是10,中位数是3;
(3)该镇小学生中,共有留守儿童60×3=1(名).
答:该镇小学生中共有留守儿童1名.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了平均数、中位数和众数以及用样本估计总体.
24、(1)x≤1;(1)x≥﹣1;(3)见解析;(4)﹣1≤x≤1.
【解析】
先求出不等式的解集,再求出不等式组的解集即可.
【详解】
解:(1)解不等式①,得x≤1,
(1)解不等式②,得x≥﹣1,
(3)把不等式①和②的解集在数轴上表示出来:
;
(4)原不等式组的解集为﹣1≤x≤1,
故答案为x≤1,x≥﹣1,﹣1≤x≤1.
【点睛】
本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.
2024年湖南省岳阳市岳阳县中考数学模拟试卷(二)+: 这是一份2024年湖南省岳阳市岳阳县中考数学模拟试卷(二)+,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年湖南省岳阳市岳阳县中考一模数学试题(含解析): 这是一份2023年湖南省岳阳市岳阳县中考一模数学试题(含解析),共22页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023年湖南省岳阳市岳阳县中考数学一模试卷(含解析): 这是一份2023年湖南省岳阳市岳阳县中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。