湖北省浠水县联考2021-2022学年中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为( )
A.1.8×105 B.1.8×104 C.0.18×106 D.18×104
2.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=,那么点C的位置可以在( )
A.点C1处 B.点C2处 C.点C3处 D.点C4处
3.下列代数运算正确的是( )
A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3•x2=x5
4.如图,A(4,0),B(1,3),以OA、OB为边作□OACB,反比例函数(k≠0)的图象经过点C.则下列结论不正确的是( )
A.□OACB的面积为12
B.若y<3,则x>5
C.将□OACB向上平移12个单位长度,点B落在反比例函数的图象上.
D.将□OACB绕点O旋转180°,点C的对应点落在反比例函数图象的另一分支上.
5.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是( )
A.三亚﹣﹣永兴岛 B.永兴岛﹣﹣黄岩岛
C.黄岩岛﹣﹣弹丸礁 D.渚碧礁﹣﹣曾母暗山
6.如图,四边形ABCD内接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,则∠BDC的度数为( )
A.100° B.105° C.110° D.115°
7.一组数据8,3,8,6,7,8,7的众数和中位数分别是( )
A.8,6 B.7,6 C.7,8 D.8,7
8.若正六边形的边长为6,则其外接圆半径为( )
A.3 B.3 C.3 D.6
9.要使分式有意义,则x的取值应满足( )
A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣2
10.下列各式中,互为相反数的是( )
A.和 B.和 C.和 D.和
11.下列大学的校徽图案是轴对称图形的是( )
A. B. C. D.
12.若关于的一元二次方程有两个不相等的实数根,则的取值范围( )
A. B. C.且 D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,▱ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD于点F,以下结论:
①E为AB的中点;
②FC=4DF;
③S△ECF=;
④当CE⊥BD时,△DFN是等腰三角形.
其中一定正确的是_____.
14.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为_____.
15.如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,点B′和B分别对应).若AB=2,反比例函数y=(k≠0)的图象恰好经过A′,B,则k的值为_____.
16.如图,边长为6的菱形ABCD中,AC是其对角线,∠B=60°,点P在CD上,CP=2,点M在AD上,点N在AC上,则△PMN的周长的最小值为_____________ .
17.不解方程,判断方程2x2+3x﹣2=0的根的情况是_____.
18.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.
(1)求抛物线的解析式;
(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;
(3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标.
20.(6分)已知如图①Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,A,C,D在同一条直线上,点M,N,F分别为AB,ED,AD的中点,∠B=∠EDC=45°,
(1)求证MF=NF
(2)当∠B=∠EDC=30°,A,C,D在同一条直线上或不在同一条直线上,如图②,图③这两种情况时,请猜想线段MF,NF之间的数量关系.(不必证明)
21.(6分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.求购买A型和B型公交车每辆各需多少万元?预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?
22.(8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高CD的长.(结果精确到0.1 m)
23.(8分)如图,∠MON的边OM上有两点A、B在∠MON的内部求作一点P,使得点P到∠MON的两边的距离相等,且△PAB的周长最小.(保留作图痕迹,不写作法)
24.(10分)已知△ABC在平面直角坐标系中的位置如图所示.分别写出图中点A和点C的坐标;画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;求点A旋转到点A′所经过的路线长(结果保留π).
25.(10分)已知点E是矩形ABCD的边CD上一点,BF⊥AE于点F,求证△ABF∽△EAD.
26.(12分)已知:如图,在正方形ABCD中,点E、F分别是AB、BC边的中点,AF与CE交点G,求证:AG=CG.
27.(12分)某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.求出y与x之间的函数关系式;写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
180000=1.8×105,
故选A.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2、D
【解析】
如图:
∵AB=5,, ∴D=4, ∵, ∴,∴AC=4,
∵在RT△AD中,D,AD=8, ∴A=,故答案为D.
3、D
【解析】
分别根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式进行逐一计算即可.
【详解】
解:A. (x+1)2=x2+2x+1,故A错误;
B. (x3)2=x6,故B错误;
C. (2x)2=4x2,故C错误.
D. x3•x2=x5,故D正确.
故本题选D.
【点睛】
本题考查的是同底数幂的乘法、幂的乘方与积的乘方、完全平方公式,熟练掌握他们的定义是解题的关键.
4、B
【解析】
先根据平行四边形的性质得到点的坐标,再代入反比例函数(k≠0)求出其解析式,再根据反比例函数的图象与性质对选项进行判断.
【详解】
解:A(4,0),B(1,3),,
,
反比例函数(k≠0)的图象经过点,
,
反比例函数解析式为.
□OACB的面积为,正确;
当时,,故错误;
将□OACB向上平移12个单位长度,点的坐标变为,在反比例函数图象上,故正确;
因为反比例函数的图象关于原点中心对称,故将□OACB绕点O旋转180°,点C的对应点落在反比例函数图象的另一分支上,正确.
故选:B.
【点睛】
本题综合考查了平行四边形的性质和反比例函数的图象与性质,结合图形,熟练掌握和运用相关性质定理是解答关键.
5、A
【解析】
根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.
【详解】
由图可得,两个点之间距离最短的是三亚-永兴岛.
故答案选A.
【点睛】
本题考查的知识点是两点之间直线距离最短,解题的关键是熟练的掌握两点之间直线距离最短.
6、B
【解析】
根据圆内接四边形的性质得出∠C的度数,进而利用平行线的性质得出∠ABC的度数,利用角平分线的定义和三角形内角和解答即可.
【详解】
∵四边形ABCD内接于⊙O,∠A=130°,
∴∠C=180°-130°=50°,
∵AD∥BC,
∴∠ABC=180°-∠A=50°,
∵BD平分∠ABC,
∴∠DBC=25°,
∴∠BDC=180°-25°-50°=105°,
故选:B.
【点睛】
本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出∠C的度数.
7、D
【解析】
试题分析:根据中位数和众数的定义分别进行解答即可.把这组数据从小到大排列:3,6,7,7,8,8,8,
8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7
考点:(1)众数;(2)中位数.
8、D
【解析】
连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.
【详解】
如图为正六边形的外接圆,ABCDEF是正六边形,
∴∠AOF=10°, ∵OA=OF, ∴△AOF是等边三角形,∴OA=AF=1.
所以正六边形的外接圆半径等于边长,即其外接圆半径为1.
故选D.
【点睛】
本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.
9、D
【解析】
试题分析:∵分式有意义,∴x+1≠0,∴x≠﹣1,即x的取值应满足:x≠﹣1.故选D.
考点:分式有意义的条件.
10、A
【解析】
根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.
【详解】
解:A. =9,=-9,故和互为相反数,故正确;
B. =9,=9,故和不是互为相反数,故错误;
C. =-8,=-8,故和不是互为相反数,故错误;
D. =8,=8故和不是互为相反数,故错误.
故选A.
【点睛】
本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.
11、B
【解析】
根据轴对称图形的概念对各选项分析判断即可得解.
【详解】
解:A、不是轴对称图形,故本选项错误;
B、是轴对称图形,故本选项正确;
C、不是轴对称图形,故本选项错误;
D、不是轴对称图形,故本选项错误.
故选:B.
【点睛】
本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
12、C
【解析】
根据一元二次方程的定义结合根的判别式即可得出关于a的一元一次不等式组,解之即可得出结论.
【详解】
解:∵关于x的一元二次方程有两个不相等的实数根,
∴ ,
解得:k<1且k≠1.
故选:C.
【点睛】
本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a的一元一次不等式组是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、①③④
【解析】
由M、N是BD的三等分点,得到DN=NM=BM,根据平行四边形的性质得到AB=CD,AB∥CD,推出△BEM∽△CDM,根据相似三角形的性质得到,于是得到BE=AB,故①正确;根据相似三角形的性质得到=,求得DF=BE,于是得到DF=AB=CD,求得CF=3DF,故②错误;根据已知条件得到S△BEM=S△EMN=S△CBE,求得=,于是得到S△ECF=,故③正确;根据线段垂直平分线的性质得到EB=EN,根据等腰三角形的性质得到∠ENB=∠EBN,等量代换得到∠CDN=∠DNF,求得△DFN是等腰三角形,故④正确.
【详解】
解:∵M、N是BD的三等分点,
∴DN=NM=BM,
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴△BEM∽△CDM,
∴,
∴BE=CD,
∴BE=AB,故①正确;
∵AB∥CD,
∴△DFN∽△BEN,
∴=,
∴DF=BE,
∴DF=AB=CD,
∴CF=3DF,故②错误;
∵BM=MN,CM=2EM,
∴△BEM=S△EMN=S△CBE,
∵BE=CD,CF=CD,
∴=,
∴S△EFC=S△CBE=S△MNE,
∴S△ECF=,故③正确;
∵BM=NM,EM⊥BD,
∴EB=EN,
∴∠ENB=∠EBN,
∵CD∥AB,
∴∠ABN=∠CDB,
∵∠DNF=∠BNE,
∴∠CDN=∠DNF,
∴△DFN是等腰三角形,故④正确;
故答案为①③④.
【点睛】
考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质.
14、36°或37°.
【解析】
分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,进而得到∠C的度数.
详解:如图,过E作EG∥AB,
∵AB∥CD,
∴GE∥CD,
∴∠BAE=∠AEG,∠DFE=∠GEF,
∴∠AEF=∠BAE+∠DFE,
设∠CEF=x,则∠AEC=2x,
∴x+2x=∠BAE+60°,
∴∠BAE=3x-60°,
又∵6°<∠BAE<15°,
∴6°<3x-60°<15°,
解得22°<x<25°,
又∵∠DFE是△CEF的外角,∠C的度数为整数,
∴∠C=60°-23°=37°或∠C=60°-24°=36°,
故答案为:36°或37°.
点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.
15、
【解析】
解:∵四边形ABCO是矩形,AB=1,
∴设B(m,1),∴OA=BC=m,
∵四边形OA′B′D与四边形OABD关于直线OD对称,
∴OA′=OA=m,∠A′OD=∠AOD=30°
∴∠A′OA=60°,
过A′作A′E⊥OA于E,
∴OE=m,A′E=m,
∴A′(m,m),
∵反比例函数(k≠0)的图象恰好经过点A′,B,
∴ m•m=m,∴m=,∴k=
故答案为
16、2
【解析】
过P作关于AC和AD的对称点,连接和,过P作, 和,M,N共线时最短,根据对称性得知△PMN的周长的最小值为.因为四边形ABCD是菱形,AD是对角线,可以求得,根据特殊三角形函数值求得,,再根据线段相加勾股定理即可求解.
【详解】
过P作关于AC和AD的对称点,连接和,过P作,
四边形ABCD是菱形,AD是对角线,
,
,
,
,
又由题意得
【点睛】
本题主要考查对称性质,菱形性质,内角和定理和勾股定理,熟悉掌握定理是关键.
17、有两个不相等的实数根.
【解析】
分析:先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.
详解:∵a=2,b=3,c=−2,
∴
∴一元二次方程有两个不相等的实数根.
故答案为有两个不相等的实数根.
点睛:考查一元二次方程根的判别式,
当时,方程有两个不相等的实数根.
当时,方程有两个相等的实数根.
当时,方程没有实数根.
18、1.738×1
【解析】
解:将1738000用科学记数法表示为1.738×1.故答案为1.738×1.
【点睛】
本题考查科学记数法—表示较大的数,掌握科学计数法的计数形式,难度不大.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1)、y=-+x+4;(2)、不存在,理由见解析.
【解析】
试题分析:(1)、首先设抛物线的解析式为一般式,将点C和点A意见对称轴代入求出函数解析式;(2)、本题利用假设法来进行证明,假设存在这样的点,然后设出点F的坐标求出FH和FG的长度,然后得出面积与t的函数关系式,根据方程无解得出结论.
试题解析:(1)、∵抛物线y=a+bx+c(a≠0)过点C(0,4) ∴C=4①
∵-=1 ∴b=-2a② ∵抛物线过点A(-2,0) ∴4a-2b+c="0" ③
由①②③解得:a=-,b=1,c=4 ∴抛物线的解析式为:y=-+x+4
(2)、不存在 假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G. 设点F的坐标为(t,+t+4),其中0<t<4 则FH=+t+4 FG=t
∴△OBF的面积=OB·FH=×4×(+t+4)=-+2t+8 △OFC的面积=OC·FG=2t
∴四边形ABFC的面积=△AOC的面积+△OBF的面积+△OFC的面积=-+4t+12
令-+4t+12=17 即-+4t-5=0 △=16-20=-4<0 ∴方程无解
∴不存在满足条件的点F
考点:二次函数的应用
20、(1)见解析;(2)MF= NF.
【解析】
(1)连接AE,BD,先证明△ACE和△BCD全等,然后得到AE=BD,然后再通过三角形中位线证明即可.
(2)根据图(2)(3)进行合理猜想即可.
【详解】
解:(1)连接AE,BD
在△ACE和△BCD中
∴△ACE≌△BCD
∴AE=BD
又∵点M,N,F分别为AB,ED,AD的中点
∴MF=BD,NF=AE
∴MF=NF
(2) MF= NF.
方法同上.
【点睛】
本题考查了三角形全等的判定和性质以及三角形中位线的知识,做出辅助线和合理猜想是解答本题的关键.
21、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;
(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.
【解析】
详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,
解得,
答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得
,
解得:6≤a≤8,
因为a是整数,
所以a=6,7,8;
则(10-a)=4,3,2;
三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.
(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;
②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;
③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;
故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
【点睛】
此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.
22、路灯的高CD的长约为6.1 m.
【解析】
设路灯的高CD为xm,
∵CD⊥EC,BN⊥EC,
∴CD∥BN,
∴△ABN∽△ACD,∴,
同理,△EAM∽△ECD,
又∵EA=MA,∵EC=DC=xm,
∴,解得x=6.125≈6.1.
∴路灯的高CD约为6.1m.
23、详见解析
【解析】
作∠MON的角平分线OT,在ON上截取OA′,使得OA′=OA,连接BA′交OT于点P,点P即为所求.
【详解】
解:如图,点P即为所求.
【点睛】
本题主要考查作图-复杂作图,利用了角平分线的性质,难点在于利用轴对称求最短路线的问题.
24、(1)、(2)见解析(3)
【解析】
试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A所经过的路程是以点C为圆心,AC长为半径的扇形的弧长.
试题解析:(1)A(0,4)C(3,1)
(2)如图所示:
(3)根据勾股定理可得:AC=3,则.
考点:图形的旋转、扇形的弧长计算公式.
25、证明见解析
【解析】
试题分析:先利用等角的余角相等得到根据有两组角对应相等,即可证明两三角形相似.
试题解析:∵四边形为矩形,
于点F,
点睛:两组角对应相等,两三角形相似.
26、详见解析.
【解析】
先证明△ADF≌△CDE,由此可得∠DAF=∠DCE,∠AFD=∠CED,再根据∠EAG=∠FCG,AE=CF,∠AEG=∠CFG可得△AEG≌△CFG,所以AG=CG.
【详解】
证明:∵四边形ABCD是正方形,
∴AD=DC,
∵E、F分别是AB、BC边的中点,
∴AE=ED=CF=DF.
又∠D=∠D,
∴△ADF≌△CDE(SAS).
∴∠DAF=∠DCE,∠AFD=∠CED.
∴∠AEG=∠CFG.
在△AEG和△CFG中
,
∴△AEG≌△CFG(ASA).
∴AG=CG.
【点睛】
本题主要考查正方形的性质、全等三角形的判定和性质,关键是要灵活运用全等三角形的判定方法.
27、(1)y=-x+170;(2)W=﹣x2+260x﹣1530,售价定为130元时,每天获得的利润最大,最大利润是2元.
【解析】
(1)先利用待定系数法求一次函数解析式;
(2)用每件的利润乘以销售量得到每天的利润W,即W=(x﹣90)(﹣x+170),然后根据二次函数的性质解决问题.
【详解】
(1)设y与x之间的函数关系式为y=kx+b,根据题意得:,解得:,∴y与x之间的函数关系式为y=﹣x+170;
(2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣1.
∵W=﹣x2+260x﹣1=﹣(x﹣130)2+2,而a=﹣1<0,∴当x=130时,W有最大值2.
答:售价定为130元时,每天获得的利润最大,最大利润是2元.
【点睛】
本题考查了二次函数的应用:利用二次函数解决利润问题,先利用利润=每件的利润乘以销售量构建二次函数关系式,然后根据二次函数的性质求二次函数的最值,一定要注意自变量x的取值范围.
湖北省鄂州鄂城区七校联考2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份湖北省鄂州鄂城区七校联考2021-2022学年中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,四根长度分别为3,4,6,,实数的倒数是等内容,欢迎下载使用。
湖北省武汉市2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份湖北省武汉市2021-2022学年中考数学最后冲刺模拟试卷含解析,共18页。
2021-2022学年江苏省海门六校联考中考数学最后冲刺模拟试卷含解析: 这是一份2021-2022学年江苏省海门六校联考中考数学最后冲刺模拟试卷含解析,共24页。试卷主要包含了如图等内容,欢迎下载使用。