|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖北省宜昌市当阳市重点中学2021-2022学年中考数学猜题卷含解析
    立即下载
    加入资料篮
    湖北省宜昌市当阳市重点中学2021-2022学年中考数学猜题卷含解析01
    湖北省宜昌市当阳市重点中学2021-2022学年中考数学猜题卷含解析02
    湖北省宜昌市当阳市重点中学2021-2022学年中考数学猜题卷含解析03
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省宜昌市当阳市重点中学2021-2022学年中考数学猜题卷含解析

    展开
    这是一份湖北省宜昌市当阳市重点中学2021-2022学年中考数学猜题卷含解析,共17页。试卷主要包含了某班7名女生的体重,估计﹣1的值在,已知点 A等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(共10小题,每小题3分,共30分)
    1.下列手机手势解锁图案中,是轴对称图形的是( )
    A. B. C. D.
    2.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是(  )

    A. B.
    C. D.
    3.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是(  )
    A.0 B.3 C.﹣3 D.﹣7
    4.如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是(  )

    A.BO=OH B.DF=CE C.DH=CG D.AB=AE
    5.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是(  )

    A.掷一枚正六面体的骰子,出现1点的概率
    B.抛一枚硬币,出现正面的概率
    C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率
    D.任意写一个整数,它能被2整除的概率
    6.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是( )
    A.74 B.44 C.42 D.40
    7.为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是(  )
    A. B.
    C. D.
    8.估计﹣1的值在(  )
    A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
    9.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有(  )个〇.

    A.6055 B.6056 C.6057 D.6058
    10.已知点 A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(  )
    A.y1<y2<y3 B.y2<y1<y3 C.y3<y2<y1 D.y3<y1<y2
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为 .
    12.若点(,1)与(﹣2,b)关于原点对称,则=_______.
    13.出售某种手工艺品,若每个获利x元,一天可售出个,则当x=_________元,一天出售该种手工艺品的总利润y最大.
    14.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.
    15.为了节约用水,某市改进居民用水设施,在2017年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为________.
    16.关于x的分式方程=2的解为正实数,则实数a的取值范围为_____.
    三、解答题(共8题,共72分)
    17.(8分)2018年春节,西安市政府实施“点亮工程”,开展“西安年·最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。在美食一条街上,小明买了一碗元宵,共5个,其中黑芝麻馅两个,五仁馅两个,桂花馅一个,当元宵端上来的时候,看着五个大小、色泽一模一样的元宵,小明的爸爸问了小明两个问题:
    (1)小明吃到第一个元宵是五仁馅的概率是多少?请你帮小明直接写出答案。
    (2)小明吃的前两个元宵是同一种馅的元宵概率是多少?请你利用你列表或树状图帮小明求出概率。
    18.(8分)矩形ABCD中,DE平分∠ADC交BC边于点E,P为DE上的一点(PE<PD),PM⊥PD,PM交AD边于点M.
    (1)若点F是边CD上一点,满足PF⊥PN,且点N位于AD边上,如图1所示.
    求证:①PN=PF;②DF+DN=DP;
    (2)如图2所示,当点F在CD边的延长线上时,仍然满足PF⊥PN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明.

    19.(8分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.
    调查结果统计表
    组别
    分组(单位:元)
    人数
    A
    0≤x<30
    4
    B
    30≤x<60
    16
    C
    60≤x<90
    a
    D
    90≤x<120
    b
    E
    x≥120
    2
    请根据以上图表,解答下列问题:填空:这次被调查的同学共有   人,a+b=   ,m=   ;求扇形统计图中扇形C的圆心角度数;该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.

    20.(8分)某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:
    表1:甲调查九年级30位同学植树情况
    每人植树棵数
    7
    8
    9
    10
    人数
    3
    6
    15
    6
    表2:乙调查三个年级各10位同学植树情况
    每人植树棵数
    6
    7
    8
    9
    10
    人数
    3
    6
    3
    12
    6
    根据以上材料回答下列问题:
    (1)关于于植树棵数,表1中的中位数是   棵;表2中的众数是   棵;
    (2)你认为同学   (填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;
    (3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?
    21.(8分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?
    22.(10分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:这项被调查的总人数是多少人?试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.

    23.(12分)如图,以△ABC的边AB为直径的⊙O分别交BC、AC于F、G,且G是的中点,过点G作DE⊥BC,垂足为E,交BA的延长线于点D
    (1)求证:DE是的⊙O切线;
    (2)若AB=6,BG=4,求BE的长;
    (3)若AB=6,CE=1.2,请直接写出AD的长.

    24.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.求证:AC是⊙O的切线;已知⊙O的半径为2.5,BE=4,求BC,AD的长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据轴对称图形与中心对称图形的定义进行判断.
    【详解】
    A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.
    【点睛】
    本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.
    2、B
    【解析】
    根据相似三角形的判定方法一一判断即可.
    【详解】
    解:因为中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,
    故选:B.
    【点睛】
    本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
    3、B
    【解析】【分析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.
    【详解】∵一次函数y=﹣2x+3中k=﹣2<0,
    ∴y随x的增大而减小,
    ∴在0≤x≤5范围内,
    x=0时,函数值最大﹣2×0+3=3,
    故选B.
    【点睛】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小.
    4、D
    【解析】
    解:∵四边形ABCD是平行四边形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.
    同理可证BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正确.
    ∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正确.
    ∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.
    同理可证EC=CG.
    ∵DH=CG,∴DF=CE,故B正确.
    无法证明AE=AB,故选D.
    5、C
    【解析】
    解:A.掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;
    B.掷一枚硬币,出现正面朝上的概率为,故此选项错误;
    C.从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:≈0.33;故此选项正确;
    D.任意写出一个整数,能被2整除的概率为,故此选项错误.
    故选C.
    6、C
    【解析】
    试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.
    考点:众数.
    7、C
    【解析】
    根据轴对称和中心对称的定义去判断即可得出正确答案.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故此选项错误;
    B、不是轴对称图形,也不是中心对称图形,故此选项错误;
    C、是轴对称图形,也是中心对称图形,故此选项正确;
    D、是轴对称图形,不是中心对称图形,故此选项错误.
    故选:C.
    【点睛】
    本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解和把握.
    8、B
    【解析】
    根据,可得答案.
    【详解】
    解:∵,
    ∴,

    ∴﹣1的值在2和3之间.
    故选B.
    【点睛】
    本题考查了估算无理数的大小,先确定的大小,在确定答案的范围.
    9、D
    【解析】
    设第n个图形有a个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a =1+3n(n为正整数)",再代入a=2019即可得出结论
    【详解】
    设第n个图形有an个〇(n为正整数),
    观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,
    ∴an=1+3n(n为正整数),
    ∴a2019=1+3×2019=1.
    故选:D.
    【点睛】
    此题考查规律型:图形的变化,解题关键在于找到规律
    10、D
    【解析】
    试题分析:反比例函数y=-的图象位于二、四象限,在每一象限内,y随x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在该函数图象上,且x1<x2<0<x3,,∴y3<y1<y2;
    故选D.
    考点:反比例函数的性质.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    让黄球的个数除以球的总个数即为所求的概率.
    【详解】
    解:因为一共10个球,其中3个黄球,所以从袋中任意摸出2个球是黄球的概率是.
    故答案为:.
    【点睛】
    本题考查了概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.
    12、.
    【解析】
    ∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴==.故答案为.
    考点:关于原点对称的点的坐标.
    13、1
    【解析】先根据题意得出总利润y与x的函数关系式,再根据二次函数的最值问题进行解答.
    解:∵出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,
    ∴y=(8-x)x,即y=-x2+8x,
    ∴当x=- =1时,y取得最大值.
    故答案为:1.
    14、28
    【解析】
    设这种电子产品的标价为x元,
    由题意得:0.9x−21=21×20%,
    解得:x=28,
    所以这种电子产品的标价为28元.
    故答案为28.
    15、
    【解析】
    试题解析:305000用科学记数法表示为:
    故答案为
    16、a<2且a≠1
    【解析】
    将a看做已知数,表示出分式方程的解,根据解为非负数列出关于a的不等式,求出不等式的解集即可得到a的范围.
    【详解】
    分式方程去分母得:x+a-2a=2(x-1),
    解得:x=2-a,
    ∵分式方程的解为正实数,
    ∴2-a>0,且2-a≠1,
    解得:a<2且a≠1.
    故答案为:a<2且a≠1.
    【点睛】
    分式方程的解.

    三、解答题(共8题,共72分)
    17、(1) ; (2) .
    【解析】
    (1)根据概率=所求情况数与总情况数之比代入解得即可.
    (2)将小明吃到的前两个元宵的所有情况列表出来即可求解.
    【详解】
    (1)5个元宵中,五仁馅的有2个,故小明吃到的第一个元宵是五仁馅的概率是;
    (2)小明吃到的前两个元宵的所有情况列表如下(记黑芝麻馅的两个分别为、,五仁馅的两个分别为、,桂花馅的一个为c):

    由图可知,共有20种等可能的情况,其中小明吃到的前两个元宵是同一种馅料的情况有4种,故小明吃到的前两个元宵是同一种馅料的概率是.
    【点睛】
    本题考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求:情况数与总情况数之比.
    18、(1)①证明见解析;②证明见解析;(2),证明见解析.
    【解析】
    (1)①利用矩形的性质,结合已知条件可证△PMN≌△PDF,则可证得结论;
    ②由勾股定理可求得DM=DP,利用①可求得MN=DF,则可证得结论;
    (2)过点P作PM1⊥PD,PM1交AD边于点M1,则可证得△PM1N≌△PDF,则可证得M1N=DF,同(1)②的方法可证得结论.
    【详解】
    解:(1)①∵四边形ABCD是矩形,∴∠ADC=90°.
    又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;
    ∵PM⊥PD,∠DMP=45°,
    ∴DP=MP.
    ∵PM⊥PD,PF⊥PN,
    ∴∠MPN+∠NPD=∠NPD+∠DPF=90°,∴∠MPN=∠DPF.
    在△PMN和△PDF中, ,
    ∴△PMN≌△PDF(ASA),
    ∴PN=PF,MN=DF;
    ②∵PM⊥PD,DP=MP,∴DM2=DP2+MP2=2DP2,∴DM=DP.
    ∵又∵DM=DN+MN,且由①可得MN=DF,∴DM=DN+DF,∴DF+DN=DP;
    (2).理由如下:
    过点P作PM1⊥PD,PM1交AD边于点M1,如图,
    ∵四边形ABCD是矩形,∴∠ADC=90°.
    又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;
    ∵PM1⊥PD,∠DM1P=45°,∴DP=M1P,
    ∴∠PDF=∠PM1N=135°,同(1)可知∠M1PN=∠DPF.
    在△PM1N和△PDF中,
    ∴△PM1N≌△PDF(ASA),∴M1N=DF,
    由勾股定理可得:=DP2+M1P2=2DP2,∴DM1DP.
    ∵DM1=DN﹣M1N,M1N=DF,∴DM1=DN﹣DF,
    ∴DN﹣DF=DP.

    【点睛】
    本题为四边形的综合应用,涉及矩形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识.在每个问题中,构造全等三角形是解题的关键,注意勾股定理的应用.本题考查了知识点较多,综合性较强,难度适中.
    19、50;28;8
    【解析】
    【分析】1)用B组的人数除以B组人数所占的百分比,即可得这次被调查的同学的人数,利用A组的人数除以这次被调查的同学的人数即可求得m的值,用总人数减去A、B、E的人数即可求得a+b的值;
    (2)先求得C组人数所占的百分比,乘以360°即可得扇形统计图中扇形的圆心角度数;(3)用总人数1000乘以每月零花钱的数额在范围的人数的百分比即可求得答案.
    【详解】解:(1)50,28,8;
    (2)(1-8%-32%-16%-4%)× 360°=40%× 360°=144°.
    即扇形统计图中扇形C的圆心角度数为144°;
    (3)1000×=560(人).
    即每月零花钱的数额x元在60≤x<120范围的人数为560人.
    【点睛】本题考核知识点:统计图表. 解题关键点:从统计图表获取信息,用样本估计总体.
    20、(1)9,9;(2)乙;(3)1680棵;
    【解析】
    (1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)根据样本要具有代表性可得乙同学抽取的样本比较有代表性;(3)利用样本估计总体的方法计算即可.
    【详解】
    (1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;
    故答案为:9,9;
    (2)乙同学所抽取的样本能更好反映此次植树活动情况;
    故答案为:乙;
    (3)由题意可得:(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),
    答:本次活动200位同学一共植树1680棵.
    【点睛】
    本题考查了抽样调查,以及中位数,解题的关键是掌握中位数定义及抽样调查抽取的样本要具有代表性.
    21、 (1)4元/瓶.(2) 销售单价至少为1元/瓶.
    【解析】
    (1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,根据数量=总价÷单价结合第二批购进饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)由数量=总价÷单价可得出第一、二批购进饮料的数量,设销售单价为y元/瓶,根据利润=销售单价×销售数量﹣进货总价结合获利不少于2100元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.
    【详解】
    (1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,
    依题意,得:=3×,
    解得:x=4,
    经检验,x=4是原方程的解,且符合题意.
    答:第一批饮料进货单价是4元/瓶;
    (2)由(1)可知:第一批购进该种饮料450瓶,第二批购进该种饮料1350瓶.
    设销售单价为y元/瓶,
    依题意,得:(450+1350)y﹣1800﹣8100≥2100,
    解得:y≥1.
    答:销售单价至少为1元/瓶.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
    22、(1)50;(2)108°;(3).
    【解析】
    分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.
    本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.
    (2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=.

    点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
    23、(1)证明见解析;(1);(3)1.
    【解析】
    (1)要证明DE是的⊙O切线,证明OG⊥DE即可;
    (1)先证明△GBA∽△EBG,即可得出=,根据已知条件即可求出BE;
    (3)先证明△AGB≌△CGB,得出BC=AB=6,BE=4.8再根据OG∥BE得出=,即可计算出AD.
    【详解】
    证明:(1)如图,连接OG,GB,

    ∵G是弧AF的中点,
    ∴∠GBF=∠GBA,
    ∵OB=OG,
    ∴∠OBG=∠OGB,
    ∴∠GBF=∠OGB,
    ∴OG∥BC,
    ∴∠OGD=∠GEB,
    ∵DE⊥CB,
    ∴∠GEB=90°,
    ∴∠OGD=90°,
    即OG⊥DE且G为半径外端,
    ∴DE为⊙O切线;
    (1)∵AB为⊙O直径,
    ∴∠AGB=90°,
    ∴∠AGB=∠GEB,且∠GBA=∠GBE,
    ∴△GBA∽△EBG,
    ∴,
    ∴;
    (3)AD=1,根据SAS可知△AGB≌△CGB,
    则BC=AB=6,
    ∴BE=4.8,
    ∵OG∥BE,
    ∴,即,
    解得:AD=1.
    【点睛】
    本题考查了相似三角形与全等三角形的判定与性质与切线的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质与切线的性质.
    24、(1)证明见解析;(2)BC=,AD=.
    【解析】
    分析:(1)连接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;
    (2)证△BDE∽△BEC得,据此可求得BC的长度,再证△AOE∽△ABC得,据此可得AD的长.
    详解:(1)如图,连接OE,

    ∵OB=OE,
    ∴∠OBE=∠OEB,
    ∵BE平分∠ABC,
    ∴∠OBE=∠CBE,
    ∴∠OEB=∠CBE,
    ∴OE∥BC,
    又∵∠C=90°,
    ∴∠AEO=90°,即OE⊥AC,
    ∴AC为⊙O的切线;
    (2)∵ED⊥BE,
    ∴∠BED=∠C=90°,
    又∵∠DBE=∠EBC,
    ∴△BDE∽△BEC,
    ∴,即,
    ∴BC=;
    ∵∠AEO=∠C=90°,∠A=∠A,
    ∴△AOE∽△ABC,
    ∴,即,
    解得:AD=.
    点睛:本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质.

    相关试卷

    天津市重点中学2021-2022学年中考数学猜题卷含解析: 这是一份天津市重点中学2021-2022学年中考数学猜题卷含解析,共21页。

    丽水市重点中学2021-2022学年中考数学猜题卷含解析: 这是一份丽水市重点中学2021-2022学年中考数学猜题卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是,下列运算正确的是,的倒数的绝对值是等内容,欢迎下载使用。

    湖北省当阳市重点名校2022年中考猜题数学试卷含解析: 这是一份湖北省当阳市重点名校2022年中考猜题数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map