湖北省宜昌市外国语初级中学2021-2022学年中考数学最后一模试卷含解析
展开这是一份湖北省宜昌市外国语初级中学2021-2022学年中考数学最后一模试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,已知抛物线y=ax2+bx+c等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适( )
A.甲 B.乙 C.丙 D.丁
2.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是( )
A. B. C. D.
3.自2013年10月习近平总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为( )
A.1.1×103人 B.1.1×107人 C.1.1×108人 D.11×106人
4.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x+c的图象可能是( )
A. B. C. D.
5.下列计算正确的是( )
A.2m+3n=5mn B.m2•m3=m6 C.m8÷m6=m2 D.(﹣m)3=m3
6.不等式组的解集在数轴上表示正确的是( )
A. B. C. D.
7.下列四个几何体中,主视图是三角形的是( )
A. B. C. D.
8.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0; ②﹣1≤a≤; ③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为( )
A.1个 B.2个 C.3个 D.4个
9.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的个数有( )
A.1 B.2 C.3 D.4
10.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是( )
A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC
二、填空题(共7小题,每小题3分,满分21分)
11.因式分解:=______.
12.计算:2﹣1+=_____.
13.若关于的不等式组无解, 则的取值范围是 ________.
14.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P= 40°,则∠BAC= .
15.若⊙O所在平面内一点P到⊙O的最大距离为6,最小距离为2,则⊙O的半径为_____.
16.分解因式:_______
17.如图,“人字梯”放在水平的地面上,当梯子的一边与地面所夹的锐角为时,两梯角之间的距离BC的长为周日亮亮帮助妈妈整理换季衣服,先使为,后又调整为,则梯子顶端离地面的高度AD下降了______结果保留根号.
三、解答题(共7小题,满分69分)
18.(10分)计算:(﹣2)2+20180﹣
19.(5分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.求w与x之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
20.(8分)如图,在△ABC中,∠C=90°.作∠BAC的平分线AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面积.
21.(10分)如图,在△ABC中,∠C = 90°,E是BC上一点,ED⊥AB,垂足为D.
求证:△ABC∽△EBD.
22.(10分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
填空:∠AHC ∠ACG;(填“>”或“<”或“=”)线段AC,AG,AH什么关系?请说明理由;设AE=m,
①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
②请直接写出使△CGH是等腰三角形的m值.
23.(12分)已知抛物线y=ax2+ c(a≠0).
(1)若抛物线与x轴交于点B(4,0),且过点P(1,–3),求该抛物线的解析式;
(2)若a>0,c =0,OA、OB是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A、B 两点,求证:直线AB恒经过定点(0,);
(3)若a>0,c <0,抛物线与x轴交于A,B两点(A在B左边),顶点为C,点P在抛物线上且位于第四象限.直线PA、PB与y轴分别交于M、N两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.
24.(14分)如图,已知矩形ABCD中,连接AC,请利用尺规作图法在对角线AC上求作一点E使得△ABC∽△CDE.(保留作图痕迹不写作法)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
根据方差的概念进行解答即可.
【详解】
由题意可知甲的方差最小,则应该选择甲.
故答案为A.
【点睛】
本题考查了方差,解题的关键是掌握方差的定义进行解题.
2、A
【解析】
∵△DEF是△AEF翻折而成,
∴△DEF≌△AEF,∠A=∠EDF,
∵△ABC是等腰直角三角形,
∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,
∴∠BED=∠CDF,
设CD=1,CF=x,则CA=CB=2,
∴DF=FA=2-x,
∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,
解得x=,
∴sin∠BED=sin∠CDF=.
故选:A.
3、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:1100万=11000000=1.1×107.
故选B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4、A
【解析】
由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b-1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b-1)x+c的对称轴x=->0,即可进行判断.
【详解】
点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,
∴x=ax2+bx+c,
∴ax2+(b-1)x+c=0;
由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,
∴方程ax2+(b-1)x+c=0有两个正实数根.
∴函数y=ax2+(b-1)x+c与x轴有两个交点,
又∵->0,a>0
∴-=-+>0
∴函数y=ax2+(b-1)x+c的对称轴x=->0,
∴A符合条件,
故选A.
5、C
【解析】
根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.
【详解】
解:A、2m与3n不是同类项,不能合并,故错误;
B、m2•m3=m5,故错误;
C、正确;
D、(-m)3=-m3,故错误;
故选:C.
【点睛】
本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.
6、A
【解析】
分析:分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来,选出符合条件的选项即可.
详解:
由①得,x≤1,
由②得,x>-1,
故此不等式组的解集为:-1
故选A.
点睛:本题考查的是在数轴上表示一元一此不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
7、D
【解析】
主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.
【详解】
解:主视图是三角形的一定是一个锥体,只有D是锥体.
故选D.
【点睛】
此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.
8、C
【解析】
①由抛物线的顶点横坐标可得出b=-2a,进而可得出4a+2b=0,结论①错误;
②利用一次函数图象上点的坐标特征结合b=-2a可得出a=-,再结合抛物线与y轴交点的位置即可得出-1≤a≤-,结论②正确;
③由抛物线的顶点坐标及a<0,可得出n=a+b+c,且n≥ax2+bx+c,进而可得出对于任意实数m,a+b≥am2+bm总成立,结论③正确;
④由抛物线的顶点坐标可得出抛物线y=ax2+bx+c与直线y=n只有一个交点,将直线下移可得出抛物线y=ax2+bx+c与直线y=n-1有两个交点,进而可得出关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.
【详解】
:①∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
∴-=1,
∴b=-2a,
∴4a+2b=0,结论①错误;
②∵抛物线y=ax2+bx+c与x轴交于点A(-1,0),
∴a-b+c=3a+c=0,
∴a=-.
又∵抛物线y=ax2+bx+c与y轴的交点在(0,2),(0,3)之间(包含端点),
∴2≤c≤3,
∴-1≤a≤-,结论②正确;
③∵a<0,顶点坐标为(1,n),
∴n=a+b+c,且n≥ax2+bx+c,
∴对于任意实数m,a+b≥am2+bm总成立,结论③正确;
④∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
∴抛物线y=ax2+bx+c与直线y=n只有一个交点,
又∵a<0,
∴抛物线开口向下,
∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,
∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.
故选C.
【点睛】
本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.
9、C
【解析】
①图中有3个等腰直角三角形,故结论错误;
②根据ASA证明即可,结论正确;
③利用面积法证明即可,结论正确;
④利用三角形的中线的性质即可证明,结论正确.
【详解】
∵CE⊥AB,∠ACE=45°,
∴△ACE是等腰直角三角形,
∵AF=CF,
∴EF=AF=CF,
∴△AEF,△EFC都是等腰直角三角形,
∴图中共有3个等腰直角三角形,故①错误,
∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,
∴∠EAH=∠BCE,
∵AE=EC,∠AEH=∠CEB=90°,
∴△AHE≌△CBE,故②正确,
∵S△ABC=BC•AD=AB•CE,AB=AC=AE,AE=CE,
∴BC•AD=CE2,故③正确,
∵AB=AC,AD⊥BC,
∴BD=DC,
∴S△ABC=2S△ADC,
∵AF=FC,
∴S△ADC=2S△ADF,
∴S△ABC=4S△ADF.
故选C.
【点睛】
本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.
10、C
【解析】
根据旋转的性质得,∠ABD=∠CBE=60°, ∠E=∠C,
则△ABD为等边三角形,即 AD=AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.
二、填空题(共7小题,每小题3分,满分21分)
11、2(x+3)(x﹣3).
【解析】
试题分析:先提公因式2后,再利用平方差公式分解即可,即=2(x2-9)=2(x+3)(x-3).
考点:因式分解.
12、
【解析】
根据负整指数幂的性质和二次根式的性质,可知=.
故答案为.
13、
【解析】
首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.
【详解】
,
解①得:x>a+3,
解②得:x<1.
根据题意得:a+3≥1,
解得:a≥-2.
故答案是:a≥-2.
【点睛】
本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤..
14、20°
【解析】
根据切线的性质可知∠PAC=90°,由切线长定理得PA=PB,∠P=40°,求出∠PAB的度数,用∠PAC﹣∠PAB得到∠BAC的度数.
【详解】
解:∵PA是⊙O的切线,AC是⊙O的直径,
∴∠PAC=90°.
∵PA,PB是⊙O的切线,
∴PA=PB.
∵∠P=40°,
∴∠PAB=(180°﹣∠P)÷2=(180°﹣40°)÷2=70°,
∴∠BAC=∠PAC﹣∠PAB=90°﹣70°=20°.
故答案为20°.
【点睛】
本题考查了切线的性质,根据切线的性质和切线长定理进行计算求出角的度数.
15、2或1
【解析】
点P可能在圆内.也可能在圆外,因而分两种情况进行讨论.
【详解】
解:当这点在圆外时,则这个圆的半径是(6-2)÷2=2;
当点在圆内时,则这个圆的半径是(6+2)÷2=1.
故答案为2或1.
【点睛】
此题主要考查点与圆的位置关系,解题的关键是注意此题应分为两种情况来解决.
16、
【解析】
=2()=.
故答案为.
17、
【解析】
根据题意画出图形,进而利用锐角三角函数关系得出答案.
【详解】
解:如图1所示:
过点A作于点D,
由题意可得:,
则是等边三角形,
故BC,
则,
如图2所示:
过点A作于点E,
由题意可得:,
则是等腰直角三角形,,
则,
故梯子顶端离地面的高度AD下降了
故答案为:.
【点睛】
此题主要考查了解直角三角形的应用,正确画出图形利用锐角三角三角函数关系分析是解题关键.
三、解答题(共7小题,满分69分)
18、﹣1
【解析】
分析:首先计算乘方、零次幂和开平方,然后再计算加减即可.
详解:原式=4+1-6=-1.
点睛:此题主要考查了实数的运算,关键是掌握乘方的意义、零次幂计算公式和二次根式的性质.
19、 (1);
(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;
(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
【解析】
(1)根据销售额=销售量×销售价单x,列出函数关系式.
(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.
(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.
【详解】
解:(1)由题意得:,
∴w与x的函数关系式为:.
(2),
∵﹣2<0,∴当x=30时,w有最大值.w最大值为2.
答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元.
(3)当w=150时,可得方程﹣2(x﹣30)2+2=150,解得x1=25,x2=3.
∵3>28,∴x2=3不符合题意,应舍去.
答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
20、(1)答案见解析;(2)
【解析】
(1)根据三角形角平分线的定义,即可得到AD;
(2)过D作于DE⊥ABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.
【详解】
解:(1)如图所示,AD即为所求;
(2)如图,过D作DE⊥AB于E,
∵AD平分∠BAC,
∴DE=CD=4,
∴S△ABD=AB·DE=20cm2.
【点睛】
掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.
21、证明见解析
【解析】
试题分析:先根据垂直的定义得出∠EDB=90°,故可得出∠EDB=∠C.再由∠B=∠B,根据有两个角相等的两三角形相似即可得出结论.
试题解析:
解:∵ED⊥AB,
∴∠EDB=90°.
∵∠C=90°,
∴∠EDB=∠C.
∵∠B=∠B,
∴∽.
点睛:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键.
22、(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面积不变.②m的值为或2或8﹣4..
【解析】
(1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;
(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;
(3)①△AGH的面积不变.理由三角形的面积公式计算即可;
②分三种情形分别求解即可解决问题.
【详解】
(1)∵四边形ABCD是正方形,
∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,
∴AC=,
∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,
∴∠AHC=∠ACG.
故答案为=.
(2)结论:AC2=AG•AH.
理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,
∴△AHC∽△ACG,
∴,
∴AC2=AG•AH.
(3)①△AGH的面积不变.
理由:∵S△AGH=•AH•AG=AC2=×(4)2=1.
∴△AGH的面积为1.
②如图1中,当GC=GH时,易证△AHG≌△BGC,
可得AG=BC=4,AH=BG=8,
∵BC∥AH,
∴,
∴AE=AB=.
如图2中,当CH=HG时,
易证AH=BC=4,
∵BC∥AH,
∴=1,
∴AE=BE=2.
如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.
在BC上取一点M,使得BM=BE,
∴∠BME=∠BEM=43°,
∵∠BME=∠MCE+∠MEC,
∴∠MCE=∠MEC=22.3°,
∴CM=EM,设BM=BE=m,则CM=EMm,
∴m+m=4,
∴m=4(﹣1),
∴AE=4﹣4(﹣1)=8﹣4,
综上所述,满足条件的m的值为或2或8﹣4.
【点睛】
本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
23、(1);(2)详见解析;(3)为定值,=
【解析】
(1)把点B(4,0),点P(1,–3)代入y=ax2+ c(a≠0),用待定系数法求解即可;
(2)如图作辅助线AE、BF垂直 x轴,设A(m,am2)、B(n,an2),由△AOE∽△OBF,可得到,然后表示出直线AB的解析式即可得到结论;
(3)作PQ⊥AB于点Q,设P(m,am2+c)、A(–t,0)、B(t,0),则at2+c=0, c= –at2
由PQ∥ON,可得ON=amt+at2,OM= –amt+at2,然后把ON,OM,OC的值代入整理即可.
【详解】
(1)把点B(4,0),点P(1,–3)代入y=ax2+ c(a≠0),
,
解之得
,
∴;
(2)如图作辅助线AE、BF垂直 x轴,设A(m,am2)、B(n,an2),
∵OA⊥OB,
∴∠AOE=∠OBF,
∴△AOE∽△OBF,
∴,,,
直线AB过点A(m,am2)、点B(n,an2),
∴过点(0,);
(3)作PQ⊥AB于点Q,设P(m,am2+c)、A(–t,0)、B(t,0),则at2+c=0, c= –at2
∵PQ∥ON,
∴,
ON=====at(m+t)= amt+at2,
同理:OM= –amt+at2,
所以,OM+ON= 2at2=–2c=OC,
所以,=.
【点睛】
本题考查了待定系数法求函数解析式,相似三角形的判定与性质,平行线分线段成比例定理.正确作出辅助线是解答本题的关键.
24、详见解析
【解析】
利用尺规过D作DE⊥AC,,交AC于E,即可使得△ABC∽△CDE.
【详解】
解:过D作DE⊥AC,如图所示,△CDE即为所求:
【点睛】
本题主要考查了尺规作图,相似三角形的判定,解决问题的关键是掌握相似三角形的判定方法.
相关试卷
这是一份靖江外国语学校2021-2022学年中考数学最后一模试卷含解析,共18页。试卷主要包含了下列图案是轴对称图形的是,九年级,如图所示的几何体的俯视图是等内容,欢迎下载使用。
这是一份湖北省宜昌市五峰县2021-2022学年中考数学最后一模试卷含解析,共15页。试卷主要包含了考生必须保证答题卡的整洁,若一个正比例函数的图象经过A,下列4个数等内容,欢迎下载使用。
这是一份湖北省宜昌市外国语初级中学2021-2022学年中考数学模拟精编试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列命题中,错误的是等内容,欢迎下载使用。