|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖北省武汉市高新区重点名校2021-2022学年中考数学模拟预测题含解析
    立即下载
    加入资料篮
    湖北省武汉市高新区重点名校2021-2022学年中考数学模拟预测题含解析01
    湖北省武汉市高新区重点名校2021-2022学年中考数学模拟预测题含解析02
    湖北省武汉市高新区重点名校2021-2022学年中考数学模拟预测题含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省武汉市高新区重点名校2021-2022学年中考数学模拟预测题含解析

    展开
    这是一份湖北省武汉市高新区重点名校2021-2022学年中考数学模拟预测题含解析,共19页。试卷主要包含了对于点A,等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是(  )

    A.12 B.14 C.16 D.18
    2.方程的解为(  )
    A.x=﹣1 B.x=1 C.x=2 D.x=3
    3.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是(  )
    A.∠1=50°,∠1=40° B.∠1=40°,∠1=50°
    C.∠1=30°,∠1=60° D.∠1=∠1=45°
    4.如图,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为米,那么这两树在坡面上的距离为( )

    A. B. C.5cosα D.
    5.一个数和它的倒数相等,则这个数是( )
    A.1 B.0 C.±1 D.±1和0
    6.在函数y=中,自变量x的取值范围是( )
    A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠1
    7.已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为(  )
    A.4 B.﹣4 C.3 D.﹣3
    8.对于点A(x1,y1),B(x2,y2),定义一种运算:.例如,A(-5,4),B(2,﹣3),.若互不重合的四点C,D,E,F,满足,则C,D,E,F四点【 】
    A.在同一条直线上 B.在同一条抛物线上
    C.在同一反比例函数图象上 D.是同一个正方形的四个顶点
    9.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为( )
    A.0.555×104 B.5.55×103 C.5.55×104 D.55.5×103
    10.某射手在同一条件下进行射击,结果如下表所示:
    射击次数(n)
    10
    20
    50
    100
    200
    500
    ……
    击中靶心次数(m)
    8
    19
    44
    92
    178
    451
    ……
    击中靶心频率()
    0.80
    0.95
    0.88
    0.92
    0.89
    0.90
    ……
    由此表推断这个射手射击1次,击中靶心的概率是( )
    A.0.6 B.0.7 C.0.8 D.0.9
    二、填空题(共7小题,每小题3分,满分21分)
    11.方程=的解是____.
    12.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.
    13.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____.
    14.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段 的长为________.

    15.若关于的一元二次方程有两个不相等的实数根,则的取值范围为__________.
    16.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为_____.

    17.将抛物线y=(x+m)2向右平移2个单位后,对称轴是y轴,那么m的值是_____.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,一盏路灯沿灯罩边缘射出的光线与地面BC交于点B、C,测得∠ABC=45°,∠ACB=30°,且BC=20米.
    (1)请用圆规和直尺画出路灯A到地面BC的距离AD;(不要求写出画法,但要保留作图痕迹)
    (2)求出路灯A离地面的高度AD.(精确到0.1米)(参考数据:≈1.414,≈1.732).

    19.(5分)如图,抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3).
    (1)求该抛物线的解析式;
    (2)在抛物线的对称轴上是否存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形?若存在,试求出点Q的坐标;若不存在,请说明理由.

    20.(8分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,且DH是⊙O的切线,连接DE交AB于点F.
    (1)求证:DC=DE;
    (2)若AE=1,,求⊙O的半径.

    21.(10分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是-2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.

    22.(10分)解不等式组:,并把解集在数轴上表示出来。

    23.(12分)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,).

    (1)求抛物线的表达式.
    (2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).
    ①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
    ②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
    (3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.
    24.(14分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和-1;乙袋中有三个完全相同的小球,分别标有数字-1、0和1.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).
    (1)请用表格或树状图列出点P所有可能的坐标;
    (1)求点P在一次函数y=x+1图象上的概率.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】

    延长线段BN交AC于E.
    ∵AN平分∠BAC,∴∠BAN=∠EAN.
    在△ABN与△AEN中,
    ∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,
    ∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.
    又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,
    ∴AC=AE+CE=10+6=16.故选C.
    2、B
    【解析】
    观察可得最简公分母是(x-3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
    【详解】
    方程的两边同乘(x−3)(x+1),得
    (x−2) (x+1)=x(x−3),

    解得x=1.
    检验:把x=1代入(x−3)(x+1)=-4≠0.
    ∴原方程的解为:x=1.
    故选B.
    【点睛】
    本题考查的知识点是解分式方程,解题关键是注意解得的解要进行检验.
    3、D
    【解析】
    能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.
    【详解】
    “如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题为∠1=∠1=45°.
    故选:D.
    【点睛】
    考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.
    4、D
    【解析】
    利用所给的角的余弦值求解即可.
    【详解】
    ∵BC=5米,∠CBA=∠α,∴AB==.
    故选D.

    【点睛】
    本题主要考查学生对坡度、坡角的理解及运用.
    5、C
    【解析】
    根据倒数的定义即可求解.
    【详解】
    的倒数等于它本身,故符合题意.
    故选:.
    【点睛】
    主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
    6、C
    【解析】
    根据分式和二次根式有意义的条件进行计算即可.
    【详解】
    由题意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.
    故x的取值范围是x≥2且x≠2.
    故选C.
    【点睛】
    本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.
    7、A
    【解析】
    根据一元二次方程根与系数的关系和整体代入思想即可得解.
    【详解】
    ∵x1,x2是关于x的方程x2+bx﹣3=0的两根,
    ∴x1+x2=﹣b,x1x2=﹣3,
    ∴x1+x2﹣3x1x2=﹣b+9=5,
    解得b=4.
    故选A.
    【点睛】
    本题主要考查一元二次方程的根与系数的关系(韦达定理),
    韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=,x1x2=.
    8、A。
    【解析】∵对于点A(x1,y1),B(x2,y2),,
    ∴如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),
    那么,

    又∵,
    ∴。
    ∴。
    令,
    则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线上,
    ∴互不重合的四点C,D,E,F在同一条直线上。故选A。
    9、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:5550=5.55×1.
    故选B.
    【点睛】
    本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    10、D
    【解析】
    观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.
    【详解】
    依题意得击中靶心频率为0.90,
    估计这名射手射击一次,击中靶心的概率约为0.90.
    故选:D.
    【点睛】
    此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.

    二、填空题(共7小题,每小题3分,满分21分)
    11、x=1
    【解析】
    观察可得方程最简公分母为x(x−1),去分母,转化为整式方程求解,结果要检验.
    【详解】
    方程两边同乘x(x−1)得:
    3x=1(x−1),
    整理、解得x=1.
    检验:把x=1代入x(x−1)≠2.
    ∴x=1是原方程的解,
    故答案为x=1.
    【点睛】
    解分式方程的基本思想是把分式方程转化为整式方程,具体方法是方程两边同时乘以最简公分母,在此过程中有可能会产生增根,增根是转化后整式的根,不是原方程的根,因此要注意检验.
    12、y=2(x+3)2+1
    【解析】
    由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.
    【详解】
    抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.
    故答案为:y=2(x+3)2+1
    【点睛】
    本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
    13、4.4×1
    【解析】
    分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    详解:44000000=4.4×1,
    故答案为4.4×1.
    点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    14、
    【解析】
    已知BC=8, AD是中线,可得CD=4, 在△CBA和△CAD中, 由∠B=∠DAC,∠C=∠C, 可判定△CBA∽△CAD,根据相似三角形的性质可得 , 即可得AC2=CD•BC=4×8=32,解得AC=4.
    15、.
    【解析】
    根据判别式的意义得到,然后解不等式即可.
    【详解】
    解:关于的一元二次方程有两个不相等的实数根,

    解得:,
    故答案为:.
    【点睛】
    此题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.
    16、2
    【解析】
    过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,
    【详解】
    解:连接OB,OA′,AA′,
    ∵AA′关于直线MN对称,

    ∵∠AMN=40°,
    ∴∠A′ON=80°,∠BON=40°,
    ∴∠A′OB=120°,
    过O作OQ⊥A′B于Q,
    在Rt△A′OQ中,OA′=2,
    ∴A′B=2A′Q=
    即PA+PB的最小值.
    【点睛】
    本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键.
    17、1
    【解析】
    根据平移规律“左加右减,上加下减”填空.
    【详解】
    解:将抛物线y=(x+m)1向右平移1个单位后,得到抛物线解析式为y=(x+m-1)1.其对称轴为:x=1-m=0,
    解得m=1.
    故答案是:1.
    【点睛】
    主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.

    三、解答题(共7小题,满分69分)
    18、(1)见解析;(2)是7.3米
    【解析】
    (1)图1,先以A为圆心,大于A到BC的距离为半径画弧交BC与EF两点,然后分别以E、F为圆心画弧,交点为G,连接AG,与BC交点点D,则AD⊥BC;图2,分别以B、C为圆心,BA为半径画弧,交于点G,连接AG,与BC交点点D,则AD⊥BC;(2)在△ABD中,DB=AD;在△ACD中,CD=AD,BC=BD+CD,由此可以建立关于AD的方程,解方程求解.
    【详解】
    解:(1)如下图,
    图1,先以A为圆心,大于A到BC的距离为半径画弧交BC与EF两点,然后分别以E、F为圆心画弧,交点为G,连接AG,与BC交点点D,则AD⊥BC;
    图2,分别以B、C为圆心,BA为半径画弧,交于点G,连接AG,与BC交点点D,则AD⊥BC;

    (2)设AD=x,在Rt△ABD中,∠ABD=45°,
    ∴BD=AD=x,
    ∴CD=20﹣x.
    ∵tan∠ACD=,
    即tan30°=,
    ∴x==10(﹣1)≈7.3(米).
    答:路灯A离地面的高度AD约是7.3米.
    【点睛】
    解此题关键是把实际问题转化为数学问题,把实际问题抽象到解直角三角形中,利用三角函数解答即可.
    19、 (1) y=﹣x2+2x+3;(2)见解析.
    【解析】
    (1)将B(3,0),C(0,3)代入抛物线y=ax2+2x+c,可以求得抛物线的解析式;
    (2) 抛物线的对称轴为直线x=1,设点Q的坐标为(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC为斜边,AQ为斜边,CQ时斜边三种情况求解即可.
    【详解】
    解:(1)∵抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3),
    ∴,得,
    ∴该抛物线的解析式为y=﹣x2+2x+3;
    (2)在抛物线的对称轴上存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形,
    理由:∵抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,点B(3,0),点C(0,3),
    ∴抛物线的对称轴为直线x=1,
    ∴点A的坐标为(﹣1,0),
    设点Q的坐标为(1,t),则
    AC2=OC2+OA2=32+12=10,
    AQ2=22+t2=4+t2,
    CQ2=12+(3﹣t)2=t2﹣6t+10,
    当AC为斜边时,
    10=4+t2+t2﹣6t+10,
    解得,t1=1或t2=2,
    ∴点Q的坐标为(1,1)或(1,2),
    当AQ为斜边时,
    4+t2=10+t2﹣6t+10,
    解得,t=,
    ∴点Q的坐标为(1,),
    当CQ时斜边时,
    t2﹣6t+10=4+t2+10,
    解得,t=,
    ∴点Q的坐标为(1,﹣),
    由上可得,当点Q的坐标是(1,1)、(1,2)、(1,)或(1,﹣)时,使得以A、C、Q为顶点的三角形为直角三角形.

    【点睛】
    本题考查了待定系数法求函数解析式,二次函数的图像与性质,勾股定理及分类讨论的数学思想,熟练掌握待定系数法是解(1)的关键,分三种情况讨论是解(2)的关键.
    20、 (1)见解析;(2).
    【解析】
    (1)连接OD,由DH⊥AC,DH是⊙O的切线,然后由平行线的判定与性质可证∠C=∠ODB,由圆周角定理可得∠OBD=∠DEC,进而∠C=∠DEC,可证结论成立;
    (2)证明△OFD∽△AFE,根据相似三角形的性质即可求出圆的半径.
    【详解】
    (1)证明:连接OD,
    由题意得:DH⊥AC,由且DH是⊙O的切线,∠ODH=∠DHA=90°,
    ∴∠ODH=∠DHA=90°,
    ∴OD∥CA,
    ∴∠C=∠ODB,
    ∵OD=OB,
    ∴∠OBD=∠ODB,
    ∴∠OBD=∠C,
    ∵∠OBD=∠DEC,
    ∴∠C=∠DEC,
    ∴DC=DE;
    (2)解:由(1)可知:OD∥AC,
    ∴∠ODF=∠AEF,
    ∵∠OFD=∠AFE,
    ∴△OFD∽△AFE,
    ∴,
    ∵AE=1,
    ∴OD=,
    ∴⊙O的半径为.

    【点睛】
    本题考查了切线的性质,平行线的判定与性质,等腰三角形的性质与判定,圆周角定理的推论,相似三角形的判定与性质,难度中等,熟练掌握各知识点是解答本题的关键.
    21、(1);(2).
    【解析】
    【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;
    (2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.
    【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,
    所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,
    ∴转动转盘一次,求转出的数字是-2的概率为=;
    (2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为,所有可能性如下表所示:
    第一次 第二次
    1
    -2
    3
    1
    (1,1)
    (1,-2)
    (1,3)
    -2
    (-2,1)
    (-2,-2)
    (-2,3)
    3
    (3,1)
    (3,-2)
    (3,3)
    由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.
    【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
    22、,解集在数轴上表示见解析
    【解析】
    试题分析:先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上即可.
    试题解析:
    由①得:
    由②得:
    ∴不等式组的解集为:
    解集在数轴上表示为:

    23、(1)抛物线的解析式为:;
    (2)①S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;
    ②存在.R点的坐标是(3,﹣);
    (3)M的坐标为(1,﹣).
    【解析】
    试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可;
    (2)①由勾股定理即可求出;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;
    (3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标.
    试题解析:(1)设抛物线的解析式是y=ax2+bx+c,
    ∵正方形的边长2,
    ∴B的坐标(2,﹣2)A点的坐标是(0,﹣2),
    把A(0,﹣2),B(2,﹣2),D(4,﹣)代入得:,
    解得a=,b=﹣,c=﹣2,
    ∴抛物线的解析式为:,
    答:抛物线的解析式为:;
    (2)①由图象知:PB=2﹣2t,BQ=t,
    ∴S=PQ2=PB2+BQ2,
    =(2﹣2t)2+t2,
    即S=5t2﹣8t+4(0≤t≤1).
    答:S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;
    ②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.
    ∵S=5t2﹣8t+4(0≤t≤1),
    ∴当S=时,5t2﹣8t+4=,得20t2﹣32t+11=0,
    解得t=,t=(不合题意,舍去),
    此时点P的坐标为(1,﹣2),Q点的坐标为(2,﹣),
    若R点存在,分情况讨论:
    (i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB,
    则R的横坐标为3,R的纵坐标为﹣,
    即R(3,﹣),
    代入,左右两边相等,
    ∴这时存在R(3,﹣)满足题意;

    (ii)假设R在QB的左边时,这时PR=QB,PR∥QB,
    则R(1,﹣)代入,,
    左右不相等,∴R不在抛物线上.(1分)
    综上所述,存点一点R(3,﹣)满足题意.
    答:存在,R点的坐标是(3,﹣);
    (3)如图,M′B=M′A,

    ∵A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,
    理由是:∵MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形,
    ∴|MB|﹣|MD|<|DB|,
    即M到D、A的距离之差为|DB|时,差值最大,
    设直线BD的解析式是y=kx+b,把B、D的坐标代入得:,
    解得:k=,b=﹣,
    ∴y=x﹣,
    抛物线的对称轴是x=1,
    把x=1代入得:y=﹣
    ∴M的坐标为(1,﹣);
    答:M的坐标为(1,﹣).
    考点:二次函数综合题.
    24、(1)见解析;(1).
    【解析】
    试题分析:(1)画出树状图(或列表),根据树状图(或表格)列出点P所有可能的坐标即可;(1)根据(1)的所有结果,计算出这些结果中点P在一次函数图像上的个数,即可求得点P在一次函数图像上的概率.
    试题解析:(1)画树状图:

    或列表如下:

    ∴点P所有可能的坐标为(1,-1),(1,0)(1,1)(-1,-1),(-1,0)(-1,1).
    ∵只有(1,1)与(-1,-1)这两个点在一次函数图像上,
    ∴P(点P在一次函数图像上)=.
    考点:用(树状图或列表法)求概率.

    相关试卷

    湖北省武汉市青山区5月重点名校2021-2022学年中考数学模拟预测题含解析: 这是一份湖北省武汉市青山区5月重点名校2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了答题时请按要求用笔,下列运算正确的是等内容,欢迎下载使用。

    湖北省武汉市新洲区达标名校2021-2022学年中考数学模拟预测题含解析: 这是一份湖北省武汉市新洲区达标名校2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,若a与5互为倒数,则a=等内容,欢迎下载使用。

    2022届苏州高新区实验重点达标名校中考数学模拟预测题含解析: 这是一份2022届苏州高新区实验重点达标名校中考数学模拟预测题含解析,共25页。试卷主要包含了下列计算正确的是,用一根长为a等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map