终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    湖北省武汉市七一中学2022年中考试题猜想数学试卷含解析

    立即下载
    加入资料篮
    湖北省武汉市七一中学2022年中考试题猜想数学试卷含解析第1页
    湖北省武汉市七一中学2022年中考试题猜想数学试卷含解析第2页
    湖北省武汉市七一中学2022年中考试题猜想数学试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省武汉市七一中学2022年中考试题猜想数学试卷含解析

    展开

    这是一份湖北省武汉市七一中学2022年中考试题猜想数学试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是,计算等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O的一条切线MK,切点为K,则MK=(  )

    A.3 B.2 C.5 D.
    2.如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的不等式kx+b>的解集为

    A.x>1 B.﹣2<x<1
    C.﹣2<x<0或x>1 D.x<﹣2
    3.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
    摸球试验次数
    100
    1000
    5000
    10000
    50000
    100000
    摸出黑球次数
    46
    487
    2506
    5008
    24996
    50007
    根据列表,可以估计出 m 的值是( )
    A.5 B.10 C.15 D.20
    4.如图,扇形AOB 中,半径OA=2,∠AOB=120°,C 是弧AB的中点,连接AC、BC,则图中阴影部分面积是 ( )

    A. B.
    C. D.
    5. 如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是(  )

    A. B. C. D.
    6.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是( )

    A.12 B.16 C.20 D.24
    7.如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为(  )

    A.40° B.36° C.50° D.45°
    8.下列计算正确的是( )
    A.(a-3)2=a2-6a-9 B.(a+3)(a-3)=a2-9
    C.(a-b)2=a2-b2 D.(a+b)2=a2+a2
    9.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长尺,木条长尺,根据题意所列方程组正确的是( )
    A. B. C. D.
    10.计算(﹣5)﹣(﹣3)的结果等于(  )
    A.﹣8 B.8 C.﹣2 D.2
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,点A,B,C在⊙O上,∠OBC=18°,则∠A=_______________________.

    12.在实数范围内分解因式:x2y﹣2y=_____.
    13.计算的结果为 .
    14.株洲市城区参加2018年初中毕业会考的人数约为10600人,则数10600用科学记数法表示为_____.
    15.如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为_____.

    16.分解因式:(2a+b)2﹣(a+2b)2= .
    三、解答题(共8题,共72分)
    17.(8分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.
    请你根据以上数据,计算舍利塔的高度AB.

    18.(8分)如图,已知点A(﹣2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点.
    (1)求抛物线的解析式及顶点D的坐标;
    (2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标.

    19.(8分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。求证:D是BC的中点;如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。

    20.(8分)已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.
    21.(8分)如图,把两个边长相等的等边△ABC和△ACD拼成菱形ABCD,点E、F分别是CB、DC延长上的动点,且始终保持BE=CF,连结AE、AF、EF.求证:AEF是等边三角形.

    22.(10分)如图,抛物线y=ax2+ax﹣12a(a<0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点M是第二象限内抛物线上一点,BM交y轴于N.
    (1)求点A、B的坐标;
    (2)若BN=MN,且S△MBC=,求a的值;
    (3)若∠BMC=2∠ABM,求的值.

    23.(12分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?
    小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.
    下面是小林的探究过程,请补充完整:
    (1)画出几何图形,明确条件和探究对象;
    如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.
    (2)通过取点、画图、测量,得到了x与y的几组值,如下表:
    x/cm
    0
    1
    2
    3
    4
    5
    6
    y/cm
    6.9
    5.3
    4.0
    3.3

    4.5
    6
    (说明:补全表格时相关数据保留一位小数)
    (3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
    (4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为 cm.

    24.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.

    (1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.
    (2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    以OM为直径作圆交⊙O于K,利用圆周角定理得到∠MKO=90°.从而得到KM⊥OK,进而利用勾股定理求解.
    【详解】
    如图所示:

    MK=.
    故选:B.
    【点睛】
    考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    2、C
    【解析】
    根据反比例函数与一次函数在同一坐标系内的图象可直接解答.
    【详解】
    观察图象,两函数图象的交点坐标为(1,2),(-2,-1),kx+b>的解就是一次函数y=kx+b图象在反比例函数y=的图象的上方的时候x的取值范围,
    由图象可得:-2<x<0或x>1,
    故选C.
    【点睛】
    本题考查的是反比例涵数与一次函数图象在同一坐标系中二者的图象之间的关系.一般这种类型的题不要计算反比计算表达式,解不等式,直接从从图象上直接解答.
    3、B
    【解析】
    由概率公式可知摸出黑球的概率为,分析表格数据可知的值总是在0.5左右,据此可求解m值.
    【详解】
    解:分析表格数据可知的值总是在0.5左右,则由题意可得,解得m=10,
    故选择B.
    【点睛】
    本题考查了概率公式的应用.
    4、A
    【解析】
    试题分析:连接AB、OC,ABOC,所以可将四边形AOBC分成三角形ABC、和三角形AOB,进行求面积,求得四边形面积是,扇形面积是S=πr2= ,所以阴影部分面积是扇形面积减去四边形面积即.故选A.
    5、C
    【解析】
    根据左视图是从左面看所得到的图形进行解答即可.
    【详解】
    从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.
    故选:C.
    【点睛】
    本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
    6、D
    【解析】
    根据三角形的中位线平行于第三边并且等于第三边的一半求出,再根据菱形的周长公式列式计算即可得解.
    【详解】
    、分别是、的中点,
    是的中位线,

    菱形的周长.
    故选:.
    【点睛】
    本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
    7、B
    【解析】
    由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴∠D=∠B=52°,
    由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,
    ∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,
    ∴∠FED′=108°﹣72°=36°.
    故选B.
    【点睛】
    本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.
    8、B
    【解析】
    利用完全平方公式及平方差公式计算即可.
    【详解】
    解:A、原式=a2-6a+9,本选项错误;
    B、原式=a2-9,本选项正确;
    C、原式=a2-2ab+b2,本选项错误;
    D、原式=a2+2ab+b2,本选项错误,
    故选:B.
    【点睛】
    本题考查了平方差公式和完全平方公式,熟练掌握公式是解题的关键.
    9、A
    【解析】
    本题的等量关系是:绳长-木长=4.5;木长-×绳长=1,据此列方程组即可求解.
    【详解】
    设绳子长x尺,木条长y尺,依题意有

    故选A.
    【点睛】
    本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.
    10、C
    【解析】分析:减去一个数,等于加上这个数的相反数. 依此计算即可求解.
    详解:(-5)-(-3)=-1.
    故选:C.
    点睛:考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号; ②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数).

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、72°.
    【解析】
    解:∵OB=OC,∠OBC=18°,
    ∴∠BCO=∠OBC=18°,
    ∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,
    ∴∠A=∠BOC=×144°=72°.
    故答案为 72°.
    【点睛】
    本题考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是本题的解题关键.
    12、y(x+)(x﹣)
    【解析】
    先提取公因式y后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.
    【详解】
    x2y-2y=y(x2-2)=y(x+)(x-).
    故答案为y(x+)(x-).
    【点睛】
    本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.
    13、
    【解析】
    直接把分子相加减即可.
    【详解】
    =,故答案为:.
    【点睛】
    本题考查了分式的加减法,关键是要注意通分及约分的灵活应用.
    14、1.06×104
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:10600=1.06×104,
    故答案为:1.06×104
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    15、
    【解析】
    分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.
    详解:∵AB=4,BC=3,
    ∴AC=BD=5,
    转动一次A的路线长是:
    转动第二次的路线长是:
    转动第三次的路线长是:
    转动第四次的路线长是:0,
    以此类推,每四次循环,
    故顶点A转动四次经过的路线长为:
    ∵2017÷4=504…1,
    ∴顶点A转动四次经过的路线长为:
    故答案为
    点睛:考查旋转的性质和弧长公式,熟记弧长公式是解题的关键.
    16、3(a+b)(a﹣b).
    【解析】
    (2a+b)2﹣(a+2b)2=4a2+4ab+b2-(a2+4ab+4b2)= 4a2+4ab+b2-a2-4ab-4b2=3a2-3b2=3(a2-b2)=3(a+b)(a-b)

    三、解答题(共8题,共72分)
    17、55米
    【解析】
    由题意可知△EDC∽△EBA,△FHC∽△FBA,根据相似三角形的性质可得,又DC=HG,可得,代入数据即可求得AC=106米,再由即可求得AB=55米.
    【详解】
    ∵△EDC∽△EBA,△FHC∽△FBA,



    即,
    ∴AC=106米,
    又 ,
    ∴,
    ∴AB=55米.
    答:舍利塔的高度AB为55米.
    【点睛】
    本题考查相似三角形的判定和性质的应用,解题的关键是灵活运用所学知识解决问题,利用相似三角形的性质建立方程解决问题.
    18、(1)y=﹣x2+x+3;D(1,);(2)P(3,).
    【解析】
    (1)设抛物线的解析式为y=a(x+2)(x-4),将点C(0,3)代入可求得a的值,将a的值代入可求得抛物线的解析式,配方可得顶点D的坐标;
    (2)画图,先根据点B和C的坐标确定直线BC的解析式,设P(m,-m2+m+3),则F(m,-m+3),表示PF的长,根据四边形DEFP为平行四边形,由DE=PF列方程可得m的值,从而得P的坐标.
    【详解】
    解:(1)设抛物线的解析式为y=a(x+2)(x﹣4),
    将点C(0,3)代入得:﹣8a=3,
    解得:a=﹣,
    y=﹣x2+x+3=﹣(x﹣1)2+,
    ∴抛物线的解析式为y=﹣x2+x+3,且顶点D(1,);
    (2)∵B(4,0),C(0,3),
    ∴BC的解析式为:y=﹣x+3,
    ∵D(1,),
    当x=1时,y=﹣+3=,
    ∴E(1,),
    ∴DE=-=,
    设P(m,﹣m2+m+3),则F(m,﹣m+3),
    ∵四边形DEFP是平行四边形,且DE∥FP,
    ∴DE=FP,
    即(﹣m2+m+3)﹣(﹣m+3)=,
    解得:m1=1(舍),m2=3,
    ∴P(3,).

    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数和二次函数的解析式,利用方程思想列等式求点的坐标,难度适中.
    19、(1)详见解析;(2)详见解析
    【解析】
    (1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,再根据全等三角形的性质和等量关系即可求解;
    (2)由(1)知AF平行等于BD,易证四边形AFBD是平行四边形,而AB=AC,AD是中线,利用等腰三角形三线合一定理,可证AD⊥BC,即∠ADB=90°,那么可证四边形AFBD是矩形.
    【详解】
    (1)证明:∵AF∥BC,
    ∴∠AFE=∠DCE,
    ∵点E为AD的中点,
    ∴AE=DE,
    在△AEF和△DEC中,

    ∴△AEF≌△DEC(AAS),
    ∴AF=CD,
    ∵AF=BD,
    ∴CD=BD,
    ∴D是BC的中点;
    (2)若AB=AC,则四边形AFBD是矩形.理由如下:
    ∵△AEF≌△DEC,
    ∴AF=CD,
    ∵AF=BD,
    ∴CD=BD;
    ∵AF∥BD,AF=BD,
    ∴四边形AFBD是平行四边形,
    ∵AB=AC,BD=CD,
    ∴∠ADB=90°,
    ∴平行四边形AFBD是矩形.
    【点睛】
    本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.
    20、y=2x2+x﹣3,C点坐标为(﹣,0)或(2,7)
    【解析】
    设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,进而求出点C的坐标即可.
    【详解】
    设抛物线的解析式为y=ax2+bx+c,
    把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得,
    解得,
    ∴抛物线的解析式为y=2x2+x﹣3,
    把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣,m2=2,
    ∴C点坐标为(﹣,0)或(2,7).
    【点睛】
    本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.
    21、见解析
    【解析】
    分析:由等边三角形的性质即可得出∠ABE=∠ACF,由全等三角形的性质即可得出结论.
    详解:证明:∵△ABC和△ACD均为等边三角形
    ∴AB=AC,∠ABC=∠ACD=60°,
    ∴∠ABE=∠ACF=120°,
    ∵BE=CF,
    ∴△ABE≌△ACF,
    ∴AE=AF,
    ∴∠EAB=∠FAC,
    ∴∠EAF=∠BAC=60°,
    ∴△AEF是等边三角形.
    点睛:此题是四边形综合题,主要考查了等边三角形的性质和全等三角形的判定和性质,直角三角形的性质,相似三角形的判定和性质,解题关键是判断出△ABE≌△ACF.
    22、(1)A(﹣4,0),B(3,0);(2);(3).
    【解析】
    (1)设y=0,可求x的值,即求A,B的坐标;
    (2)作MD⊥x轴,由CO∥MD可得OD=3,把x=-3代入解析式可得M点坐标,可得ON的长度,根据S△BMC=,可求a的值;
    (3)过M点作ME∥AB,设NO=m,=k,可以用m,k表示CO,EO,MD,ME,可求M点坐标,代入可得k,m,a的关系式,由CO=2km+m=-12a,可得方程组,解得k,即可求结果.
    【详解】
    (1)设y=0,则0=ax2+ax﹣12a (a<0),
    ∴x1=﹣4,x2=3,
    ∴A(﹣4,0),B(3,0)
    (2)如图1,作MD⊥x轴,

    ∵MD⊥x轴,OC⊥x轴,
    ∴MD∥OC,
    ∴=且NB=MN,
    ∴OB=OD=3,
    ∴D(﹣3,0),
    ∴当x=﹣3时,y=﹣6a,
    ∴M(﹣3,﹣6a),
    ∴MD=﹣6a,
    ∵ON∥MD
    ∴,
    ∴ON=﹣3a,
    根据题意得:C(0,﹣12a),
    ∵S△MBC=,
    ∴(﹣12a+3a)×6=,
    a=﹣,
    (3)如图2:过M点作ME∥AB,

    ∵ME∥AB,
    ∴∠EMB=∠ABM且∠CMB=2∠ABM,
    ∴∠CME=∠NME,且ME=ME,∠CEM=∠NEM=90°,
    ∴△CME≌△MNE,
    ∴CE=EN,
    设NO=m,=k(k>0),
    ∵ME∥AB,
    ∴==k,
    ∴ME=3k,EN=km=CE,
    ∴EO=km+m,
    CO=CE+EN+ON=2km+m=﹣12a,
    即,
    ∴M(﹣3k,km+m),
    ∴km+m=a(9k2﹣3k﹣12),
    (k+1)×=(k+1)(9k﹣12),
    ∴=9k-12,
    ∴k=,
    ∴.
    【点睛】
    本题考查的知识点是函数解析式的求法,二次函数的图象和性质,是二次函数与解析几何知识的综合应用,难度较大.
    23、(1)见解析;(1)3.5;(3)见解析; (4)3.1
    【解析】
    根据题意作图测量即可.
    【详解】
    (1)取点、画图、测量,得到数据为3.5
    故答案为:3.5
    (3)由数据得

    (4)当△DEF为等边三角形是,EF=DE,由∠B=45°,射线DE⊥BC于点E,则BE=EF.即y=x
    所以,当(1)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.1.
    【点睛】
    本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究.
    24、(1)证明见解析;(2);3.
    【解析】
    试题分析:(1)连接OD、OE、ED.先证明△AOE是等边三角形,得到AE=AO=0D,则四边形AODE是平行四边形,然后由OA=OD证明四边形AODE是菱形;
    (2)连接OD、DF.先由△OBD∽△ABC,求出⊙O的半径,然后证明△ADC∽△AFD,得出AD2=AC•AF,进而求出AD.
    试题解析:(1)证明:如图1,连接OD、OE、ED.
    ∵BC与⊙O相切于一点D,
    ∴OD⊥BC,
    ∴∠ODB=90°=∠C,
    ∴OD∥AC,
    ∵∠B=30°,
    ∴∠A=60°,
    ∵OA=OE,
    ∴△AOE是等边三角形,
    ∴AE=AO=0D,
    ∴四边形AODE是平行四边形,
    ∵OA=OD,
    ∴四边形AODE是菱形.

    (2)解:设⊙O的半径为r.
    ∵OD∥AC,
    ∴△OBD∽△ABC.
    ∴,即8r=6(8﹣r).
    解得r=,
    ∴⊙O的半径为.
    如图2,连接OD、DF.
    ∵OD∥AC,
    ∴∠DAC=∠ADO,
    ∵OA=OD,
    ∴∠ADO=∠DAO,
    ∴∠DAC=∠DAO,
    ∵AF是⊙O的直径,
    ∴∠ADF=90°=∠C,
    ∴△ADC∽△AFD,
    ∴,
    ∴AD2=AC•AF,
    ∵AC=6,AF=,
    ∴AD2=×6=45,
    ∴AD==3.

    点评:本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、菱形的判定和性质以及相似三角形的判定和性质,是一个综合题,难度中等.熟练掌握相关图形的性质及判定是解本题的关键.
    考点:切线的性质;菱形的判定与性质;相似三角形的判定与性质.

    相关试卷

    湖北省黄州思源实验校2021-2022学年中考试题猜想数学试卷含解析:

    这是一份湖北省黄州思源实验校2021-2022学年中考试题猜想数学试卷含解析,共27页。试卷主要包含了考生必须保证答题卡的整洁,如图,sin45°的值等于等内容,欢迎下载使用。

    湖北省武汉市七一华源中学2021-2022学年中考数学适应性模拟试题含解析:

    这是一份湖北省武汉市七一华源中学2021-2022学年中考数学适应性模拟试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列命题是假命题的是,的相反数是,下列命题是真命题的是,下列几何体中三视图完全相同的是等内容,欢迎下载使用。

    湖北省武汉市江夏区第六中学2021-2022学年中考试题猜想数学试卷含解析:

    这是一份湖北省武汉市江夏区第六中学2021-2022学年中考试题猜想数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,-4的绝对值是,下列运算中正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map