贵州省水城实验校2022年中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.下列运算,结果正确的是( )
A.m2+m2=m4 B.2m2n÷mn=4m
C.(3mn2)2=6m2n4 D.(m+2)2=m2+4
2.下列图案中,是轴对称图形的是( )
A. B. C. D.
3.估计﹣2的值应该在( )
A.﹣1﹣0之间 B.0﹣1之间 C.1﹣2之间 D.2﹣3之间
4.计算﹣1﹣(﹣4)的结果为( )
A.﹣3 B.3 C.﹣5 D.5
5.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 ( )
A.2 B.2 C.3 D.
6.二元一次方程组的解是( )
A. B. C. D.
7. “可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿用科学记数法可表示为( )
A.0.8×1011 B.8×1010 C.80×109 D.800×108
8.下列函数中,二次函数是( )
A.y=﹣4x+5 B.y=x(2x﹣3)
C.y=(x+4)2﹣x2 D.y=
9.若点M(﹣3,y1),N(﹣4,y2)都在正比例函数y=﹣k2x(k≠0)的图象上,则y1与y2的大小关系是( )
A.y1<y2 B.y1>y2 C.y1=y2 D.不能确定
10.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是( )
A.150° B.140° C.130° D.120°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.把多项式3x2-12因式分解的结果是_____________.
12.已知:正方形 ABCD.
求作:正方形 ABCD 的外接圆.
作法:如图,
(1)分别连接 AC,BD,交于点 O;
(2)以点 O 为圆心,OA 长为半径作⊙O,⊙O 即为所求作的圆.
请回答:该作图的依据是__________________________________.
13.如图,已知直线l:y=x,过点(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,……;按此做法继续下去,则点M2000的坐标为______________.
14.因式分解:3x3﹣12x=_____.
15.二次函数y=的图象如图,点A0位于坐标原点,点A1,A2,A3…An在y轴的正半轴上,点B1,B2,B3…Bn在二次函数位于第一象限的图象上,点C1,C2,C3…Cn在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形An﹣1BnAnCn都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠An1BnAn
=60°,菱形An﹣1BnAnCn的周长为 .
16.将一副三角尺如图所示叠放在一起,则的值是 .
三、解答题(共8题,共72分)
17.(8分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:
组别
成绩(分)
频数(人数)
频率
一
2
0.04
二
10
0.2
三
14
b
四
a
0.32
五
8
0.16
请根据表格提供的信息,解答以下问题:本次决赛共有 名学生参加;直接写出表中a= ,b= ;请补全下面相应的频数分布直方图;
若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .
18.(8分)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OF⊥AB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且∠ACE+∠AFO=180°.求证:EM是⊙O的切线;若∠A=∠E,BC=,求阴影部分的面积.(结果保留和根号).
19.(8分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.
对雾霾了解程度的统计表:
对雾霾的了解程度
百分比
A.非常了解
5%
B.比较了解
m
C.基本了解
45%
D.不了解
n
请结合统计图表,回答下列问题.
(1)本次参与调查的学生共有 人,m= ,n= ;
(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是 度;
(3)请补全条形统计图;
(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.
20.(8分)先化简,再求值:(m+2﹣)•,其中m=﹣.
21.(8分)已知抛物线y=a(x-1)2+3(a≠0)与y轴交于点A(0,2),顶点为B,且对称轴l1与x轴交于点M
(1)求a的值,并写出点B的坐标;
(2)将此抛物线向右平移所得新的抛物线与原抛物线交于点C,且新抛物线的对称轴l2与x轴交于点N,过点C做DE∥x轴,分别交l1、l2于点D、E,若四边形MDEN是正方形,求平移后抛物线的解析式.
22.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.
求证:(1)△ABE≌△CDF;四边形BFDE是平行四边形.
23.(12分)校园手机现象已经受到社会的广泛关注.某校的一个兴趣小组对“是否赞成中学生带手机进校园”的问题在该校校园内进行了随机调查.并将调查数据作出如下不完整的整理;
看法
频数
频率
赞成
5
无所谓
0.1
反对
40
0.8
(1)本次调查共调查了 人;(直接填空)请把整理的不完整图表补充完整;若该校有3000名学生,请您估计该校持“反对”态度的学生人数.
24.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:四边形BFDE是平行四边形.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
直接利用积的乘方运算法则、合并同类项法则和单项式除以单项式运算法则计算得出答案.
【详解】
A. m2+m2=2m2,故此选项错误;
B. 2m2n÷mn=4m,正确;
C. (3mn2)2=9m2n4,故此选项错误;
D. (m+2)2=m2+4m+4,故此选项错误.
故答案选:B.
【点睛】
本题考查了乘方运算法则、合并同类项法则和单项式除以单项式运算法则,解题的关键是熟练的掌握乘方运算法则、合并同类项法则和单项式除以单项式运算法则.
2、B
【解析】
根据轴对称图形的定义,逐一进行判断.
【详解】
A、C是中心对称图形,但不是轴对称图形;B是轴对称图形;D不是对称图形.
故选B.
【点睛】
本题考查的是轴对称图形的定义.
3、A
【解析】
直接利用已知无理数得出的取值范围,进而得出答案.
【详解】
解:∵1<<2,
∴1-2<﹣2<2-2,
∴-1<﹣2<0
即-2在-1和0之间.
故选A.
【点睛】
此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.
4、B
【解析】
原式利用减法法则变形,计算即可求出值.
【详解】
,
故选:B.
【点睛】
本题主要考查了有理数的加减,熟练掌握有理数加减的运算法则是解决本题的关键.
5、A
【解析】
连接BD,交AC于O,
∵正方形ABCD,
∴OD=OB,AC⊥BD,
∴D和B关于AC对称,
则BE交于AC的点是P点,此时PD+PE最小,
∵在AC上取任何一点(如Q点),QD+QE都大于PD+PE(BE),
∴此时PD+PE最小,
此时PD+PE=BE,
∵正方形的面积是12,等边三角形ABE,
∴BE=AB=,
即最小值是2,
故选A.
【点睛】本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE最小时P点的位置.
6、B
【解析】
利用加减消元法解二元一次方程组即可得出答案
【详解】
解:①﹣②得到y=2,把y=2代入①得到x=4,
∴,
故选:B.
【点睛】
此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.
7、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将800亿用科学记数法表示为:8×1.
故选:B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
8、B
【解析】
A. y=-4x+5是一次函数,故此选项错误;
B. y= x(2x-3)=2x2-3x,是二次函数,故此选项正确;
C. y=(x+4)2−x2=8x+16,为一次函数,故此选项错误;
D. y=是组合函数,故此选项错误.
故选B.
9、A
【解析】
根据正比例函数的增减性解答即可.
【详解】
∵正比例函数y=﹣k2x(k≠0),﹣k2<0,
∴该函数的图象中y随x的增大而减小,
∵点M(﹣3,y1),N(﹣4,y2)在正比例函数y=﹣k2x(k≠0)图象上,﹣4<﹣3,
∴y2>y1,
故选:A.
【点睛】
本题考查了正比例函数图象与系数的关系:对于y=kx(k为常数,k≠0),当k>0时, y=kx的图象经过一、三象限,y随x的增大而增大;当k<0时, y=kx的图象经过二、四象限,y随x的增大而减小.
10、A
【解析】
直接根据圆周角定理即可得出结论.
【详解】
∵A、B、C是⊙O上的三点,∠B=75°,
∴∠AOC=2∠B=150°.
故选A.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、3(x+2)(x-2)
【解析】
因式分解时首先考虑提公因式,再考虑运用公式法;多项式3x2-12因式分解先提公因式3,再利用平方差公式因式分解.
【详解】
3x2-12=3()=3.
12、正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.
【解析】
利用正方形的性质得到 OA=OB=OC=OD,则以点O为圆心,OA长为半径作⊙O,点B、C、D都在⊙O 上,从而得到⊙O 为正方形的外接圆.
【详解】
∵四边形 ABCD 为正方形,
∴OA=OB=OC=OD,
∴⊙O 为正方形的外接圆.
故答案为正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.
【点睛】
本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
13、 (24001,0)
【解析】
分析:根据直线l的解析式求出,从而得到根据直角三角形30°角所对的直角边等于斜边的一半求出 然后表示出与的关系,再根据点在x轴上,即可求出点M2000的坐标
详解:∵直线l:
∴
∵NM⊥x轴,M1N⊥直线l,
∴
∴
同理,
…,
所以,点的坐标为
点M2000的坐标为(24001,0).
故答案为:(24001,0).
点睛:考查了一次函数图象上点的坐标特征,根据点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,注意各相关知识的综合应用.
14、3x(x+2)(x﹣2)
【解析】
先提公因式3x,然后利用平方差公式进行分解即可.
【详解】
3x3﹣12x
=3x(x2﹣4)
=3x(x+2)(x﹣2),
故答案为3x(x+2)(x﹣2).
【点睛】
本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
15、4n
【解析】
试题解析:∵四边形A0B1A1C1是菱形,∠A0B1A1=60°,
∴△A0B1A1是等边三角形.
设△A0B1A1的边长为m1,则B1(,);
代入抛物线的解析式中得:,
解得m1=0(舍去),m1=1;
故△A0B1A1的边长为1,
同理可求得△A1B2A2的边长为2,
…
依此类推,等边△An-1BnAn的边长为n,
故菱形An-1BnAnCn的周长为4n.
考点:二次函数综合题.
16、
【解析】
试题分析:∵∠BAC=∠ACD=90°,∴AB∥CD.
∴△ABE∽△DCE.∴.
∵在Rt△ACB中∠B=45°,∴AB=AC.
∵在RtACD中,∠D=30°,∴.
∴.
三、解答题(共8题,共72分)
17、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.
【解析】
试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.
试题解析:(1)2÷0.04=50
(2)50×0.32=16 14÷50=0.28
(3)
(4)(0.32+0.16)×100%=48%
考点:频数分布直方图
18、(1)详见解析;(2);
【解析】
(1)连接OC,根据垂直的定义得到∠AOF=90°,根据三角形的内角和得到∠ACE=90°+∠A,根据等腰三角形的性质得到∠OCE=90°,得到OC⊥CE,于是得到结论;
(2)根据圆周角定理得到∠ACB=90°,推出∠ACO=∠BCE,得到△BOC是等边三角形,根据扇形和三角形的面积公式即可得到结论.
【详解】
:(1)连接OC,
∵OF⊥AB,
∴∠AOF=90°,
∴∠A+∠AFO+90°=180°,
∵∠ACE+∠AFO=180°,
∴∠ACE=90°+∠A,
∵OA=OC,
∴∠A=∠ACO,
∴∠ACE=90°+∠ACO=∠ACO+∠OCE,
∴∠OCE=90°,
∴OC⊥CE,
∴EM是⊙O的切线;
(2)∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ACO+∠BCO=∠BCE+∠BCO=90°,
∴∠ACO=∠BCE,
∵∠A=∠E,
∴∠A=∠ACO=∠BCE=∠E,
∴∠ABC=∠BCO+∠E=2∠A,
∴∠A=30°,
∴∠BOC=60°,
∴△BOC是等边三角形,
∴OB=BC=,
∴阴影部分的面积=,
【点睛】
本题考查了切线的判定,等腰三角形的判定和性质,扇形的面积计算,连接OC 是解题的关键.
19、解:(1)400;15%;35%.
(2)1.
(3)∵D等级的人数为:400×35%=140,
∴补全条形统计图如图所示:
(4)列树状图得:
∵从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,
∴小明参加的概率为:P(数字之和为奇数);
小刚参加的概率为:P(数字之和为偶数).
∵P(数字之和为奇数)≠P(数字之和为偶数),
∴游戏规则不公平.
【解析】
(1)根据“基本了解”的人数以及所占比例,可求得总人数:180÷45%=400人.在根据频数、百分比之间的关系,可得m,n的值:.
(2)根据在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心的度数与360°的比可得出统计图中D部分扇形所对应的圆心角:360°×35%=1°.
(3)根据D等级的人数为:400×35%=140,据此补全条形统计图.
(4)用树状图或列表列举出所有可能,分别求出小明和小刚参加的概率,若概率相等,游戏规则公平;反之概率不相等,游戏规则不公平.
20、-2(m+3),-1.
【解析】
此题的运算顺序:先括号里,经过通分,再约分化为最简,最后代值计算.
【详解】
解:(m+2-)•,
=,
=-,
=-2(m+3).
把m=-代入,得,
原式=-2×(-+3)=-1.
21、(1)a=-1,B坐标为(1,3);(2)y=-(x-3)2+3,或y=-(x-7)2+3.
【解析】
(1)利用待定系数法即可解决问题;
(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,再用m表示点C的坐标,需分两种情况讨论,用待定系数法即可解决问题.
【详解】
(1)把点A(0,2)代入抛物线的解析式可得,2=a+3,
∴a=-1,
∴抛物线的解析式为y=-(x-1)2+3,顶点为(1,3)
(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,
由解得x=
∴点C的横坐标为
∵MN=m-1,四边形MDEN是正方形,
∴C(,m-1)
把C点代入y=-(x-1)2+3,
得m-1=-+3,
解得m=3或-5(舍去)
∴平移后的解析式为y=-(x-3)2+3,
当点C在x轴的下方时,C(,1-m)
把C点代入y=-(x-1)2+3,
得1-m=-+3,
解得m=7或-1(舍去)
∴平移后的解析式为y=-(x-7)2+3
综上:平移后的解析式为y=-(x-3)2+3,或y=-(x-7)2+3.
【点睛】
此题主要考查二次函数的综合问题,解题的关键是熟知正方形的性质与函数结合进行求解.
22、(1)见解析;(2)见解析;
【解析】
(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.
(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.
【详解】
证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,
在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,
∴△ABE≌△CDF(SAS).
(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.
∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.
∴四边形BFDE是平行四边形.
23、(1)50;(2)见解析;(3)2400.
【解析】
(1)用反对的频数除以反对的频率得到调查的总人数;
(2)求无所谓的人数和赞成的频率即可把整理的不完整图表补充完整;
(3)根据题意列式计算即可.
【详解】
解:(1)观察统计表知道:反对的频数为40,频率为0.8,
故调查的人数为:40÷0.8=50人;
故答案为:50;
(2)无所谓的频数为:50﹣5﹣40=5人,
赞成的频率为:1﹣0.1﹣0.8=0.1;
看法
频数
频率
赞成
5
0.1
无所谓
5
0.1
反对
40
0.8
统计图为:
(3)0.8×3000=2400人,
答:该校持“反对”态度的学生人数是2400人.
【点睛】
本题考查的是条形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
24、证明见解析
【解析】
∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC,
∵AE=CF
∴AD-AE=BC-CF
即DE=BF
∴四边形BFDE是平行四边形.
贵州省水城实验校2021-2022学年中考数学模拟预测题含解析: 这是一份贵州省水城实验校2021-2022学年中考数学模拟预测题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,在数轴上表示不等式2,在平面直角坐标系中,点等内容,欢迎下载使用。
2022年北京临川校中考数学模拟精编试卷含解析: 这是一份2022年北京临川校中考数学模拟精编试卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,将一副三角板,计算÷的结果是,的值是,如图,直线与y轴交于点,已知某几何体的三视图等内容,欢迎下载使用。
2022年湖北省黄冈市麻城市思源实验校中考数学模拟精编试卷含解析: 这是一份2022年湖北省黄冈市麻城市思源实验校中考数学模拟精编试卷含解析,共17页。试卷主要包含了计算﹣1﹣,下列四个命题中,真命题是,3的相反数是,计算等内容,欢迎下载使用。