|试卷下载
终身会员
搜索
    上传资料 赚现金
    河南省南阳新野县联考2021-2022学年中考数学猜题卷含解析
    立即下载
    加入资料篮
    河南省南阳新野县联考2021-2022学年中考数学猜题卷含解析01
    河南省南阳新野县联考2021-2022学年中考数学猜题卷含解析02
    河南省南阳新野县联考2021-2022学年中考数学猜题卷含解析03
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南省南阳新野县联考2021-2022学年中考数学猜题卷含解析

    展开
    这是一份河南省南阳新野县联考2021-2022学年中考数学猜题卷含解析,共17页。试卷主要包含了答题时请按要求用笔,如图,一段抛物线,下列各数中最小的是,下列计算正确的有个等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为(  )

    A.4.5m B.4.8m C.5.5m D.6 m
    2.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是(  )

    A.56 B.58 C.63 D.72
    3.如图,△ABC中,∠ACB=90°,∠A=30°,AB=1.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为( )

    A. B.
    C. D.
    4.一个多边形的每个内角均为120°,则这个多边形是( )
    A.四边形 B.五边形 C.六边形 D.七边形
    5.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是(  )
    A.7 B.3 C.1 D.﹣7
    6.如图,下列各数中,数轴上点A表示的可能是( )

    A.4的算术平方根 B.4的立方根 C.8的算术平方根 D.8的立方根
    7.如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2, 交x轴于点A2;将C2绕点A2旋转180°得C3, 交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为(   )

    A.4 B.﹣4 C.﹣6 D.6
    8.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为( )
    A.14 B.7 C.﹣2 D.2
    9.下列各数中最小的是( )
    A.0 B.1 C.﹣ D.﹣π
    10.下列计算正确的有( )个
    ①(﹣2a2)3=﹣6a6 ②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4 ④﹣2m3+m3=﹣m3 ⑤﹣16=﹣1.
    A.0 B.1 C.2 D.3
    二、填空题(共7小题,每小题3分,满分21分)
    11.计算(5ab3)2的结果等于_____.
    12.如图甲,对于平面上不大于90°的∠MON,我们给出如下定义:如果点P在∠MON的内部,作PE⊥OM,PF⊥ON,垂足分别为点E、F,那么称PE+PF的值为点P相对于∠MON的“点角距离”,记为d(P,∠MON).如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比纵坐标大2,对于∠xOy,满足d(P,∠xOy)=10,点P的坐标是_____.

    13.分解因式:= .
    14.如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018M=__________.

    15.若正六边形的边长为2,则此正六边形的边心距为______.
    16.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为(  )

    A.144° B.84° C.74° D.54°
    17.若关于的一元二次方程(m-1)x2-4x+1=0有两个不相等的实数根,则m的取值范围为_____________.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ与MN平行,河岸MN上有A、B两个相距50米的凉亭,小亮在河对岸D处测得∠ADP=60°,然后沿河岸走了110米到达C处,测得∠BCP=30°,求这条河的宽.(结果保留根号)

    19.(5分)如图,直线y=2x+6与反比例函数y=(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.求m的值和反比例函数的表达式;直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?

    20.(8分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.求口袋中黄球的个数;甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;
    21.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==
    迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.

    (1)求证:△ADB≌△AEC;(2)若AD=2,BD=3,请计算线段CD的长;
    拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
    (3)证明:△CEF是等边三角形;(4)若AE=4,CE=1,求BF的长.
    22.(10分)《九章算术》中有这样一道题,原文如下:
    今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为;若甲把其的钱给乙,则乙的钱数也能为,问甲、乙各有多少钱?
    请解答上述问题.
    23.(12分)计算:÷(﹣1)
    24.(14分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.
    (1)请判断直线BC与⊙O的位置关系,并说明理由;
    (2)已知AD=5,CD=4,求BC的长.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.
    【详解】
    解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,
    ∵△ABC∽△EDC,
    ∴,
    即,
    解得:AB=6,
    故选:D.
    【点睛】
    本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.
    2、B
    【解析】
    试题分析:第一个图形的小圆数量=1×2+2=4;第二个图形的小圆数量=2×3+2=8;第三个图形的小圆数量=3×4+2=14;则第n个图形的小圆数量=n(n+1)+2个,则第七个图形的小圆数量=7×8+2=58个.
    考点:规律题
    3、D
    【解析】
    解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=,∴y=×AP×PQ=×x×=x2;
    当点Q在BC上时,如下图所示:

    ∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP•tan60°=(1﹣x),∴ =AP•PQ= = ,∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选D.
    点睛:本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况.
    4、C
    【解析】
    由题意得,180°(n-2)=120°,
    解得n=6.故选C.
    5、B
    【解析】
    因为当x=1时,代数式的值是7,所以1+1+m=7,所以m=5,当x=-1时,=-1-1+5=3,
    故选B.
    6、C
    【解析】
    解:由题意可知4的算术平方根是2,4的立方根是 <2, 8的算术平方根是, 2<<3,8的立方根是2,
    故根据数轴可知,
    故选C
    7、C
    【解析】
    分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=403…2,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.
    详解:当y=0时,﹣x(x﹣5)=0,解得x1=0,x2=5,则A1(5,0),
    ∴OA1=5,
    ∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…;如此进行下去,得到一“波浪线”,
    ∴A1A2=A2A3=…=OA1=5,
    ∴抛物线C404的解析式为y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),
    当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣1,
    即m=﹣1.
    故选C.
    点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.
    8、D
    【解析】
    解不等式得到x≥m+3,再列出关于m的不等式求解.
    【详解】
    ≤﹣1,
    m﹣1x≤﹣6,
    ﹣1x≤﹣m﹣6,
    x≥m+3,
    ∵关于x的一元一次不等式≤﹣1的解集为x≥4,
    ∴m+3=4,解得m=1.
    故选D.
    考点:不等式的解集
    9、D
    【解析】
    根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断.
    【详解】
    ﹣π<﹣<0<1.
    则最小的数是﹣π.
    故选:D.
    【点睛】
    本题考查了实数大小的比较,理解任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键.
    10、C
    【解析】
    根据积的乘方法则,多项式乘多项式的计算法则,完全平方公式,合并同类项的计算法则,乘方的定义计算即可求解.
    【详解】
    ①(﹣2a2)3=﹣8a6,错误;
    ②(x﹣2)(x+3)=x2+x﹣6,错误;
    ③(x﹣2)2=x2﹣4x+4,错误
    ④﹣2m3+m3=﹣m3,正确;
    ⑤﹣16=﹣1,正确.
    计算正确的有2个.
    故选C.
    【点睛】
    考查了积的乘方,多项式乘多项式,完全平方公式,合并同类项,乘方,关键是熟练掌握计算法则正确进行计算.

    二、填空题(共7小题,每小题3分,满分21分)
    11、25a2b1.
    【解析】
    代数式内每项因式均平方即可.
    【详解】
    解:原式=25a2b1.
    【点睛】
    本题考查了代数式的乘方.
    12、(6,4)或(﹣4,﹣6)
    【解析】
    设点P的横坐标为x,表示出纵坐标,然后列方程求出x,再求解即可.
    【详解】
    解:设点P的横坐标为x,则点P的纵坐标为x-2,由题意得,
    当点P在第一象限时,x+x-2=10,
    解得x=6,
    ∴x-2=4,
    ∴P(6,4);
    当点P在第三象限时,-x-x+2=10,
    解得x=-4,
    ∴x-2=-6,
    ∴P(-4,-6).
    故答案为:(6,4)或(-4,-6).
    【点睛】
    本题主要考查了点的坐标,读懂题目信息,理解“点角距离”的定义并列出方程是解题的关键.
    13、a(a+2)(a-2)
    【解析】

    14、.
    【解析】
    探究规律,利用规律即可解决问题.
    【详解】
    ∵∠MON=45°,
    ∴△C2B2C2为等腰直角三角形,
    ∴C2B2=B2C2=A2B2.
    ∵正方形A2B2C2A2的边长为2,
    ∴OA3=AA3=A2B2=A2C2=2.OA2=4,OM=OB2=,
    同理,可得出:OAn=An-2An=An-2An-2=,
    ∴OA2028=A2028A2027=,
    ∴A2028M=2-.
    故答案为2-.
    【点睛】
    本题考查规律型问题,解题的关键是学会探究规律的方法,学会利用规律解决问题,属于中考常考题型.
    15、.
    【解析】
    连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.
    【详解】
    连接OA、OB、OC、OD、OE、OF,

    ∵正六边形ABCDEF,
    ∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,
    ∴△AOB是等边三角形,
    ∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,
    在△OAM中,由勾股定理得:OM=.
    16、B
    【解析】
    正五边形的内角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B.
    17、且
    【解析】
    试题解析: ∵一元二次方程有两个不相等的实数根,
    ∴m−1≠0且△=16−4(m−1)>0,解得m<5且m≠1,
    ∴m的取值范围为m<5且m≠1.
    故答案为:m<5且m≠1.
    点睛:一元二次方程
    方程有两个不相等的实数根时:

    三、解答题(共7小题,满分69分)
    18、米.
    【解析】
    试题分析:根据矩形的性质,得到对边相等,设这条河宽为x米,则根据特殊角的三角函数值,可以表示出ED和BF,根据EC=ED+CD,AF=AB+BF,列出等式方程,求解即可.
    试题解析:作AE⊥PQ于E,CF⊥MN于F.

    ∵PQ∥MN,
    ∴四边形AECF为矩形,
    ∴EC=AF,AE=CF.
    设这条河宽为x米,
    ∴AE=CF=x.
    在Rt△AED中,


    ∵PQ∥MN,

    ∴在Rt△BCF中,

    ∵EC=ED+CD,AF=AB+BF,

    解得
    ∴这条河的宽为米.
    19、(1)m=8,反比例函数的表达式为y=;(2)当n=3时,△BMN的面积最大.
    【解析】
    (1)求出点A的坐标,利用待定系数法即可解决问题;
    (2)构造二次函数,利用二次函数的性质即可解决问题.
    【详解】
    解:(1)∵直线y=2x+6经过点A(1,m),
    ∴m=2×1+6=8,
    ∴A(1,8),
    ∵反比例函数经过点A(1,8),
    ∴8=,
    ∴k=8,
    ∴反比例函数的解析式为y=.
    (2)由题意,点M,N的坐标为M(,n),N(,n),
    ∵0<n<6,
    ∴<0,
    ∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,
    ∴n=3时,△BMN的面积最大.
    20、 (1)1;(2)
    【解析】
    (1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;
    【详解】
    解:(1)设口袋中黄球的个数为个,
    根据题意得:
    解得:=1
    经检验:=1是原分式方程的解
    ∴口袋中黄球的个数为1个
    (2)画树状图得:

    ∵共有12种等可能的结果,两次摸出都是红球的有2种情况
    ∴两次摸出都是红球的概率为: .
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.
    21、(1)见解析;(2)CD =;(3)见解析;(4)
    【解析】
    试题分析:迁移应用:(1)如图2中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;
    (2)结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°= AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;
    拓展延伸:(3)如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;
    (4)由AE=4,EC=EF=1,推出AH=HE=2,FH=3,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.
    试题解析:
    迁移应用:(1)证明:如图2,

    ∵∠BAC=∠DAE=120°,
    ∴∠DAB=∠CAE,
    在△DAE和△EAC中,
    DA=EA,∠DAB=∠EAC,AB=AC,
    ∴△DAB≌△EAC,
    (2)结论:CD=AD+BD.
    理由:如图2-1中,作AH⊥CD于H.

    ∵△DAB≌△EAC,
    ∴BD=CE,
    在Rt△ADH中,DH=AD•cos30°=AD,
    ∵AD=AE,AH⊥DE,
    ∴DH=HE,
    ∵CD=DE+EC=2DH+BD=AD+BD=.
    拓展延伸:(3)如图3中,作BH⊥AE于H,连接BE.

    ∵四边形ABCD是菱形,∠ABC=120°,
    ∴△ABD,△BDC是等边三角形,
    ∴BA=BD=BC,
    ∵E、C关于BM对称,
    ∴BC=BE=BD=BA,FE=FC,
    ∴A、D、E、C四点共圆,
    ∴∠ADC=∠AEC=120°,
    ∴∠FEC=60°,
    ∴△EFC是等边三角形,
    (4)∵AE=4,EC=EF=1,
    ∴AH=HE=2,FH=3,
    在Rt△BHF中,∵∠BFH=30°,
    ∴ =cos30°,
    ∴BF=.
    22、甲有钱,乙有钱.
    【解析】
    设甲有钱x,乙有钱y,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可.
    【详解】
    解:设甲有钱,乙有钱.
    由题意得: ,
    解方程组得: ,
    答:甲有钱,乙有钱.
    【点睛】
    本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键.
    23、
    【解析】
    根据分式的混合运算法则把原式进行化简即可.
    【详解】
    原式=÷(﹣)

    =•
    =.
    【点睛】
    本题考查的是分式的混合运算,熟知分式的混合运算的法则是解答此题的关键.
    24、(1)BC与相切;理由见解析;
    (2)BC=6
    【解析】
    试题分析:(1)BC与相切;由已知可得∠BAD=∠BED又由∠DBC=∠BED可得∠BAD=∠DBC,由AB为直径可得∠ADB=90°,从而可得∠CBO=90°,继而可得BC与相切
    (2)由AB为直径可得∠ADB=90°,从而可得∠BDC=90°,由BC与相切,可得∠CBO=90°,从而可得∠BDC=∠CBO,可得,所以得,得,由可得AC=9,从而可得BC=6(BC="-6" 舍去)
    试题解析:(1)BC与相切;
    ∵,∴∠BAD=∠BED ,∵∠DBC=∠BED,∴∠BAD=∠DBC,∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,∴∠CBO=90°,∴点B在上,∴BC与相切
    (2)∵AB为直径,∴∠ADB=90°,∴∠BDC=90°,∵BC与相切,∴∠CBO=90°,∴∠BDC=∠CBO,∴,∴,∴,∵,∴AC=9,∴,∴BC=6(BC="-6" 舍去)
    考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.勾股定理.

    相关试卷

    山东省淄博沂源县联考2021-2022学年中考数学猜题卷含解析: 这是一份山东省淄博沂源县联考2021-2022学年中考数学猜题卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    期河南省南阳市南召县2022年中考数学猜题卷含解析: 这是一份期河南省南阳市南召县2022年中考数学猜题卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    河南省郑州一中汝州实验中学2021-2022学年中考数学猜题卷含解析: 这是一份河南省郑州一中汝州实验中学2021-2022学年中考数学猜题卷含解析,共23页。试卷主要包含了如果a﹣b=5,那么代数式,已知a=等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map