湖北省华中学师大一附中2021-2022学年中考数学最后一模试卷含解析
展开这是一份湖北省华中学师大一附中2021-2022学年中考数学最后一模试卷含解析,共20页。试卷主要包含了的绝对值是,方程x,下列各式正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.一、单选题
如图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的( )
A.点A B.点B C.点C D.点D
2.sin45°的值等于( )
A. B.1 C. D.
3.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为( )
A.54° B.64° C.74° D.26°
4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )
A.0.7米 B.1.5米 C.2.2米 D.2.4米
5.的绝对值是( )
A. B. C. D.
6.方程x(x-2)+x-2=0的两个根为( )
A., B.,
C. , D.,
7.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是( )
A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD
8.一元二次方程x2+x﹣2=0的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.只有一个实数根 D.没有实数根
9.已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧的中点,若△POC为直角三角形,则PB的长度( )
A.1 B.5 C.1或5 D.2或4
10.下列各式正确的是( )
A. B.
C. D.
11.a、b互为相反数,则下列成立的是( )
A.ab=1 B.a+b=0 C.a=b D.=-1
12.近似数精确到( )
A.十分位 B.个位 C.十位 D.百位
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知关于x的方程有两个不相等的实数根,则m的最大整数值是 .
14.方程的根为_____.
15.2017我市社会消费品零售总额达18800000000元,把18800000000用科学记数法表示为_____.
16.计算:
(1)()2=_____;
(2) =_____.
17.分解因式: .
18.化简的结果等于__.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.
(1)求证:PC是⊙O的切线;
(2)若PC=3,PF=1,求AB的长.
20.(6分)已知:如图,□ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F. 求证:BE=DF.
21.(6分)先化简,后求值:,其中.
22.(8分)如图,在建筑物M的顶端A处测得大楼N顶端B点的仰角α=45°,同时测得大楼底端A点的俯角为β=30°.已知建筑物M的高CD=20米,求楼高AB为多少米?(≈1.732,结果精确到0.1米)
23.(8分)某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元.
(1)请求出y关于x的函数关系式;
(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?
(3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润降低元,厂家如何生产可使每天获利最大?最大利润是多少?
A
B
成本(元/瓶)
50
35
利润(元/瓶)
20
15
24.(10分)如图,△ABC中,∠A=90°,AB=AC=4,D是BC边上一点,将点D绕点A逆时针旋转60°得到点E,连接CE.
(1)当点E在BC边上时,画出图形并求出∠BAD的度数;
(2)当△CDE为等腰三角形时,求∠BAD的度数;
(3)在点D的运动过程中,求CE的最小值.
(参考数值:sin75°=, cos75°=,tan75°=)
25.(10分)如图所示,AB是⊙O的一条弦,DB切⊙O于点B,过点D作DC⊥OA于点C,DC与AB相交于点E.
(1)求证:DB=DE;
(2)若∠BDE=70°,求∠AOB的大小.
26.(12分)如图1,图2分别是某款篮球架的实物图与示意图,已知底座BC=1.5米,底座BC与支架AC所成的角∠ACB=60°,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.3米,篮板底部支架HE与支架AF所成的角∠FHE=45°,求篮筐D到地面的距离.(精确到0.01米参考数据:≈1.73,≈1.41)
27.(12分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;若∠1=40°,求∠BDE的度数.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据全等三角形的性质和已知图形得出即可.
【详解】
解:∵△MNP≌△MEQ,
∴点Q应是图中的D点,如图,
故选:D.
【点睛】
本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.
2、D
【解析】
根据特殊角的三角函数值得出即可.
【详解】
解:sin45°=,
故选:D.
【点睛】
本题考查了特殊角的三角函数的应用,能熟记特殊角的三角函数值是解此题的关键,难度适中.
3、B
【解析】
根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.
【详解】
∵四边形ABCD为菱形,
∴AB∥CD,AB=BC,
∴∠MAO=∠NCO,∠AMO=∠CNO,
在△AMO和△CNO中,
,
∴△AMO≌△CNO(ASA),
∴AO=CO,
∵AB=BC,
∴BO⊥AC,
∴∠BOC=90°,
∵∠DAC=26°,
∴∠BCA=∠DAC=26°,
∴∠OBC=90°﹣26°=64°.
故选B.
【点睛】
本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.
4、C
【解析】
在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.
【详解】
在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.
【点睛】
本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.
5、C
【解析】
根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决.
【详解】
在数轴上,点到原点的距离是,
所以,的绝对值是,
故选C.
【点睛】
错因分析 容易题,失分原因:未掌握绝对值的概念.
6、C
【解析】
根据因式分解法,可得答案.
【详解】
解:因式分解,得(x-2)(x+1)=0,
于是,得x-2=0或x+1=0,
解得x1=-1,x2=2,
故选:C.
【点睛】
本题考查了解一元二次方程,熟练掌握因式分解法是解题关键.
7、D
【解析】
根据垂径定理判断即可.
【详解】
连接DA.
∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB.
∵2∠DAB=∠BOD,∴∠CAD=∠BOD.
故选D.
【点睛】
本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.
8、A
【解析】
∵∆=12-4×1×(-2)=9>0,
∴方程有两个不相等的实数根.
故选A.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
9、C
【解析】
由点C是劣弧AB的中点,得到OC垂直平分AB,求得DA=DB=3,根据勾股定理得到OD==1,若△POC为直角三角形,只能是∠OPC=90°,则根据相似三角形的性质得到PD=2,于是得到结论.
【详解】
∵点C是劣弧AB的中点,
∴OC垂直平分AB,
∴DA=DB=3,
∴OD=,
若△POC为直角三角形,只能是∠OPC=90°,
则△POD∽△CPD,
∴,
∴PD2=4×1=4,
∴PD=2,
∴PB=3﹣2=1,
根据对称性得,
当P在OC的左侧时,PB=3+2=5,
∴PB的长度为1或5.
故选C.
【点睛】
考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图形是解题的关键.
10、A
【解析】
∵,则B错;,则C;,则D错,故选A.
11、B
【解析】
依据相反数的概念及性质即可得.
【详解】
因为a、b互为相反数,
所以a+b=1,
故选B.
【点睛】
此题主要考查相反数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,1的相反数是1.
12、C
【解析】
根据近似数的精确度:近似数5.0×102精确到十位.
故选C.
考点:近似数和有效数字
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1.
【解析】
试题分析:∵关于x的方程有两个不相等的实数根,
∴.
∴m的最大整数值为1.
考点:1.一元二次方程根的判别式;2.解一元一次不等式.
14、﹣2或﹣7
【解析】
把无理方程转化为整式方程即可解决问题.
【详解】
两边平方得到:13+2=25,
∴=6,
∴(x+11)(2-x)=36,
解得x=-2或-7,
经检验x=-2或-7都是原方程的解.
故答案为-2或-7
【点睛】
本题考查无理方程,解题的关键是学会把无理方程转化为整式方程.
15、1.88×1
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:把18800000000用科学记数法表示为1.88×1,
故答案为:1.88×1.
【点睛】
此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
16、
【解析】
(1)直接利用分式乘方运算法则计算得出答案;
(2)直接利用分式除法运算法则计算得出答案.
【详解】
(1)()2=;
故答案为;
(2) ==.
故答案为.
【点睛】
此题主要考查了分式的乘除法运算,正确掌握运算法则是解题关键.
17、
【解析】
分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
先提取公因式后继续应用平方差公式分解即可:.
18、.
【解析】
先通分变为同分母分式,然后根据分式的减法法则计算即可.
【详解】
解:原式
.
故答案为:.
【点睛】
此题考查的是分式的减法,掌握分式的减法法则是解决此题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析;(2)1.
【解析】
试题分析:(1)连接OC,欲证明PC是⊙O的切线,只要证明PC⊥OC即可;
(2)延长PO交圆于G点,由切割线定理求出PG即可解决问题.
试题解析:(1)如图,连接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切线;
(2)延长PO交圆于G点,∵PF×PG=,PC=3,PF=1,∴PG=9,∴FG=9﹣1=1,∴AB=FG=1.
考点:切线的判定;切割线定理.
20、(1)证明:∵ABCD是平行四边形
∴AB=CD
AB∥CD
∴∠ABE=∠CDF
又∵AE⊥BD,CF⊥BD
∴∠AEB=∠CFD=
∴△ABE≌△CDF
∴BE=DF
【解析】
证明:在□ABCD中
∵AB∥CD
∴∠ABE=∠CDF…………………………………………………………4分
∵AE⊥BD CF⊥BD
∴∠AEB=∠CFD=900……………………………………………………5分
∵AB=CD
∴△ABE≌△CDF…………………………………………………………6分
∴BE=DF
21、,
【解析】
分析:先把分值分母因式分解后约分,再进行通分得到原式=,然后把x的值代入计算即可.
详解:原式=•﹣1
=﹣
=
当x=+1时,原式==.
点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.
22、楼高AB为54.6米.
【解析】
过点C作CE⊥AB于E,解直角三角形求出CE和CE的长,进而求出AB的长.
【详解】
解:
如图,过点C作CE⊥AB于E,
则AE=CD=20,
∵CE====20,
BE=CEtanα=20×tan45°=20×1=20,
∴AB=AE+EB=20+20≈20×2.732≈54.6(米),
答:楼高AB为54.6米.
【点睛】
此题主要考查了仰角与俯角的应用,根据已知构造直角三角形利用锐角三角函数关系得出是解题关键.
23、(1)y=5x+9000;(2)每天至少获利10800元;(3)每天生产A产品250件,B产品350件获利最大,最大利润为9625元.
【解析】
试题分析:(1)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;利润=A种品牌白酒瓶数×A种品牌白酒一瓶的利润+B种品牌白酒瓶数×B种品牌白酒一瓶的利润,列出函数关系式;
(2)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;成本=A种品牌白酒瓶数×A种品牌白酒一瓶的成本+B种品牌白酒瓶数×B种品牌白酒一瓶的成本,列出不等式,求x的值,再代入(1)求利润.
(3)列出y与x的关系式,求y的最大值时,x的值.
试题解析:
(1)y=20x+15(600-x) =5x+9000,
∴y关于x的函数关系式为y=5x+9000;
(2)根据题意,得50 x+35(600-x)≥26400,
解得x≥360,
∵y=5x+9000,5>0,
∴y随x的增大而增大,
∴当x=360时,y有最小值为10800,
∴每天至少获利10800元;
(3) ,
∵,∴当x=250时,y有最大值9625,
∴每天生产A产品250件,B产品350件获利最大,最大利润为9625元.
24、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD =60°;(3)CE=.
【解析】
(1)如图1中,当点E在BC上时.只要证明△BAD≌△CAE,即可推出∠BAD=∠CAE=(90°-60°)=15°;
(2)分两种情形求解①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形.②如图3中,当CD=CE时,△DEC是等腰三角形;
(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先确定点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),可得EC的最小值即为线段CM的长(垂线段最短).
【详解】
解:(1)如图1中,当点E在BC上时.
∵AD=AE,∠DAE=60°,
∴△ADE是等边三角形,
∴∠ADE=∠AED=60°,
∴∠ADB=∠AEC=120°,
∵AB=AC,∠BAC=90°,
∴∠B=∠C=45°,
在△ABD和△ACE中,
∠B=∠C,∠ADB=∠AEC,AB=AC,
∴△BAD≌△CAE,
∴∠BAD=∠CAE=(90°-60°)=15°.
(2)①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形,∠BAD=∠BAC=45°.
②如图3中,当CD=CE时,△DEC是等腰三角形.
∵AD=AE,
∴AC垂直平分线段DE,
∴∠ACD=∠ACE=45°,
∴∠DCE=90°,
∴∠EDC=∠CED=45°,
∵∠B=45°,
∴∠EDC=∠B,
∴DE∥AB,
∴∠BAD=∠ADE=60°.
(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.
∵∠AOE=∠DOE′,∠AE′D=∠AEO,
∴△AOE∽△DOE′,
∴AO:OD=EO:OE',
∴AO:EO=OD:OE',
∵∠AOD=∠EOE′,
∴△AOD∽△EOE′,
∴∠EE′O=∠ADO=60°,
∴点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),
∴EC的最小值即为线段CM的长(垂线段最短),
设E′N=CN=a,则AN=4-a,
在Rt△ANE′中,tan75°=AN:NE',
∴2+=,
∴a=2-,
∴CE′=CN=2-.
在Rt△CE′M中,CM=CE′•cos30°=,
∴CE的最小值为.
【点睛】
本题考查几何变换综合题、等腰直角三角形的性质、等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轨迹等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用垂线段最短解决最值问题,属于中考压轴题.
25、(1)证明见解析;(2)110°.
【解析】
分析:(1)欲证明DB=DE,只要证明∠BED=∠ABD即可;
(2)因为△OAB是等腰三角形,属于只要求出∠OBA即可解决问题;
详解:(1)证明:∵DC⊥OA,
∴∠OAB+∠CEA=90°,
∵BD为切线,
∴OB⊥BD,
∴∠OBA+∠ABD=90°,
∵OA=OB,
∴∠OAB=∠OBA,
∴∠CEA=∠ABD,
∵∠CEA=∠BED,
∴∠BED=∠ABD,
∴DE=DB.
(2)∵DE=DB,∠BDE=70°,
∴∠BED=∠ABD=55°,
∵BD为切线,
∴OB⊥BD,
∴∠OBA=35°,
∵OA=OB,
∴∠OBA=180°-2×35°=110°.
点睛:本题考查圆周角定理、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
26、3.05米
【解析】
延长FE交CB的延长线于M, 过A作AG⊥FM于G, 解直角三角形即可得到正确结论.
【详解】
解:
如图:延长FE交CB的延长线于M,过A作AG⊥FM于G,
在Rt△ABC中,tan∠ACB=,
∴AB=BC•tan60°=1.5×1.73=2.595,
∴GM=AB=2.595,
在Rt△AGF中,∵∠FAG=∠FHE=45°,sin∠FAG=,
∴sin45°=,
∴FG=1.76,
∴DM=FG+GM﹣DF≈3.05米.
答:篮框D到地面的距离是3.05米.
【点睛】
本题主要考查直角三角形和三角函数,构造合适的辅助线是本题解题的关键.
27、(1)见解析;(1)70°.
【解析】
(1)根据全等三角形的判定即可判断△AEC≌△BED;
(1)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数.
【详解】
证明:(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.
在△AOD和△BOE中,
∠A=∠B,∴∠BEO=∠1.
又∵∠1=∠1,∴∠1=∠BEO,∴∠AEC=∠BED.
在△AEC和△BED中,
∴△AEC≌△BED(ASA).
(1)∵△AEC≌△BED,
∴EC=ED,∠C=∠BDE.
在△EDC中,∵EC=ED,∠1=40°,∴∠C=∠EDC=70°,
∴∠BDE=∠C=70°.
【点睛】
本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.
相关试卷
这是一份江西师大附中2021-2022学年中考数学最后一模试卷含解析,共18页。试卷主要包含了下列运算正确的等内容,欢迎下载使用。
这是一份湖北省潜江市2021-2022学年中考数学最后一模试卷含解析,共21页。试卷主要包含了已知,下列计算正确的是等内容,欢迎下载使用。
这是一份湖北省麻城市2021-2022学年中考数学最后一模试卷含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。