|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖北省黄冈市黄梅县重点达标名校2022年中考数学考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    湖北省黄冈市黄梅县重点达标名校2022年中考数学考试模拟冲刺卷含解析01
    湖北省黄冈市黄梅县重点达标名校2022年中考数学考试模拟冲刺卷含解析02
    湖北省黄冈市黄梅县重点达标名校2022年中考数学考试模拟冲刺卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省黄冈市黄梅县重点达标名校2022年中考数学考试模拟冲刺卷含解析

    展开
    这是一份湖北省黄冈市黄梅县重点达标名校2022年中考数学考试模拟冲刺卷含解析,共24页。试卷主要包含了下列运算中正确的是,化简的结果为,点M等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在平行四边形ABCD中,都不一定 成立的是(  )
    ①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.

    A.①和④ B.②和③ C.③和④ D.②和④
    2.一元二次方程4x2﹣2x+=0的根的情况是( )
    A.有两个不相等的实数根 B.有两个相等的实数根
    C.没有实数根 D.无法判断
    3.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是(  )

    A.70° B.60° C.55° D.50°
    4.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于(  )

    A.132° B.134° C.136° D.138°
    5.下列运算中正确的是( )
    A.x2÷x8=x−6 B.a·a2=a2 C.(a2)3=a5 D.(3a)3=9a3
    6.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了(  )

    A.0.9米 B.1.3米 C.1.5米 D.2米
    7.化简的结果为( )
    A.﹣1 B.1 C. D.
    8.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )

    A. B. C. D.
    9.点M(1,2)关于y轴对称点的坐标为(  )
    A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)
    10.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果 C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有( )

    A.6个 B.7个 C.8个 D.9个
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知b是a,c的比例中项,若a=4,c=16,则b=________.
    12.一组数据4,3,5,x,4,5的众数和中位数都是4,则x=_____.
    13.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买_____个.
    14.已知,(),请用计算器计算当时,、的若干个值,并由此归纳出当时,、间的大小关系为______.
    15.抛物线 的顶点坐标是________.
    16.一个正多边形的一个内角是它的一个外角的5倍,则这个多边形的边数是_______________
    三、解答题(共8题,共72分)
    17.(8分)全民健身运动已成为一种时尚 ,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:
    A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.
    以下是根据调查结果绘制的统计图表的一部分,
    运动形式
    A
    B
    C
    D
    E
    人数





    请你根据以上信息,回答下列问题:
    接受问卷调查的共有 人,图表中的 , .
    统计图中,类所对应的扇形的圆心角的度数是 度.

    揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有人,请你估计一下该社区参加环岛路“暴走团”的人数.
    18.(8分)在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6)、(-1,4);请在图中的网格平面内建立平面直角坐标系;请画出△ABC关于x轴对称的△A1B1C1;请在y轴上求作一点P,使△PB1C的周长最小,并直接写出点P的坐标.

    19.(8分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?
    20.(8分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.
    (1)如图1,求证:KE=GE;
    (2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;
    (3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=,求CN的长.

    21.(8分)已知抛物线F:y=x1+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).

    (1)求抛物线F的解析式;
    (1)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x1,y1)(点A在第二象限),求y1﹣y1的值(用含m的式子表示);
    (3)在(1)中,若m=,设点A′是点A关于原点O的对称点,如图1.
    ①判断△AA′B的形状,并说明理由;
    ②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.
    22.(10分)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点B的坐标为(1,0),点C的坐标为(0,4);点D的坐标为(0,2),点P为二次函数图象上的动点.
    (1)求二次函数的表达式;
    (2)当点P位于第二象限内二次函数的图象上时,连接AD,AP,以AD,AP为邻边作平行四边形APED,设平行四边形APED的面积为S,求S的最大值;
    (3)在y轴上是否存在点F,使∠PDF与∠ADO互余?若存在,直接写出点P的横坐标;若不存在,请说明理由.

    23.(12分)如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.

    (1)求证:AE=BF;
    (2)连接GB,EF,求证:GB∥EF;
    (3)若AE=1,EB=2,求DG的长.
    24.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.
    (1)求证:DE是⊙O的切线;
    (2)若AD=16,DE=10,求BC的长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    ∵四边形ABCD是平行四边形,
    ∴AO=CO,故①成立;
    AD∥BC,故③成立;
    利用排除法可得②与④不一定成立,
    ∵当四边形是菱形时,②和④成立.
    故选D.
    2、B
    【解析】
    试题解析:在方程4x2﹣2x+ =0中,△=(﹣2)2﹣4×4× =0,
    ∴一元二次方程4x2﹣2x+=0有两个相等的实数根.
    故选B.
    考点:根的判别式.
    3、A
    【解析】
    试题分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.
    考点:平行线的性质.
    4、B
    【解析】
    过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.
    解:

    过E作EF∥AB,
    ∵AB∥CD,
    ∴AB∥CD∥EF,
    ∴∠C=∠FEC,∠BAE=∠FEA,
    ∵∠C=44°,∠AEC为直角,
    ∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,
    ∴∠1=180°﹣∠BAE=180°﹣46°=134°,
    故选B.
    “点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.
    5、A
    【解析】
    根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.
    【详解】
    解:A、x2÷x8=x-6,故该选项正确;
    B、a•a2=a3,故该选项错误;
    C、(a2)3=a6,故该选项错误;
    D、(3a)3=27a3,故该选项错误;
    故选A.
    【点睛】
    此题主要考查了同底数幂的乘除法、幂的乘方和积的乘方,关键是掌握相关运算法则.
    6、B
    【解析】
    试题分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC和CE的长即可.
    解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,
    ∴AC=2,
    ∵BD=0.9,
    ∴CD=2.1.
    在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,
    ∴EC=0.7,
    ∴AE=AC﹣EC=2﹣0.7=1.2.
    故选B.
    考点:勾股定理的应用.
    7、B
    【解析】
    先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.
    【详解】
    解:.
    故选B.
    8、C
    【解析】
    试题分析:由题意可得BQ=x.
    ①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=BP•BQ,解y=•3x•x=;故A选项错误;
    ②1<x≤2时,P点在CD边上,则△BPQ的面积=BQ•BC,解y=•x•3=;故B选项错误;
    ③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=AP•BQ,解y=•(9﹣3x)•x=;故D选项错误.
    故选C.
    考点:动点问题的函数图象.
    9、A
    【解析】
    关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.
    【详解】
    点M(1,2)关于y轴对称点的坐标为(-1,2)
    【点睛】
    本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.
    10、A
    【解析】
    根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.
    【详解】
    如图:分情况讨论:

    ①AB为等腰直角△ABC底边时,符合条件的C点有2个;
    ②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.
    故选:C.
    【点睛】
    本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、±8
    【解析】
    根据比例中项的定义即可求解.
    【详解】
    ∵b是a,c的比例中项,若a=4,c=16,
    ∴b2=ac=4×16=64,
    ∴b=±8,
    故答案为±8
    【点睛】
    此题考查了比例中项的定义,如果作为比例线段的内项是两条相同的线段,即a∶b=b∶c或,那么线段b叫做线段a、c的比例中项.
    12、1
    【解析】
    一组数据中出现次数最多的数据叫做众数,由此可得出答案.
    【详解】
    ∵一组数据1,3,5,x,1,5的众数和中位数都是1,
    ∴x=1,
    故答案为1.
    【点睛】
    本题考查了众数的知识,解答本题的关键是掌握众数的定义.
    13、1
    【解析】
    设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.
    【详解】
    设购买篮球x个,则购买足球个,
    根据题意得:,
    解得:.
    为整数,
    最大值为1.
    故答案为1.
    【点睛】
    本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.
    14、
    【解析】
    试题分析:当n=3时,A=≈0.3178,B=1,A<B;
    当n=4时,A=≈0.2679,B=≈0.4142,A<B;
    当n=5时,A=≈0.2631,B=≈0.3178,A<B;
    当n=6时,A=≈0.2134,B=≈0.2679,A<B;
    ……
    以此类推,随着n的增大,a在不断变小,而b的变化比a慢两个数,所以可知当n≥3时,A、B的关系始终是A<B.
    15、(0,-1)
    【解析】
    ∵a=2,b=0,c=-1,∴-=0, ,
    ∴抛物线的顶点坐标是(0,-1),
    故答案为(0,-1).
    16、1
    【解析】
    设这个正多边的外角为x°,则内角为5x°,根据内角和外角互补可得x+5x=180,解可得x的值,再利用外角和360°÷外角度数可得边数.
    【详解】
    设这个正多边的外角为x°,由题意得:
    x+5x=180,
    解得:x=30,
    360°÷30°=1.
    故答案为:1.
    【点睛】
    此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.

    三、解答题(共8题,共72分)
    17、(1)150、45、36;(2)28.8°;(3)450人
    【解析】
    (1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;
    (2)360°乘以A项目人数占总人数的比例可得;
    (3)利用总人数乘以样本中C人数所占比例可得.
    【详解】
    解:(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)=45,
    ∴n=36,
    故答案为:150、45、36;
    (2)A类所对应的扇形圆心角的度数为
    故答案为:28.8°;
    (3)(人)
    答:估计该社区参加碧沙岗“暴走团”的大约有450人
    【点睛】
    本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
    18、(1)(2)见解析;(3)P(0,2).
    【解析】
    分析:(1)根据A,C两点的坐标即可建立平面直角坐标系.
    (2)分别作各点关于x轴的对称点,依次连接即可.
    (3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,即为所求.
    详解:(1)(2)如图所示:

    (3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,则点P即为所求.
    设直线B1C′的解析式为y=kx+b(k≠0),
    ∵B1(﹣2,-2),C′(1,4),
    ∴,解得:,
    ∴直线AB2的解析式为:y=2x+2,
    ∴当x=0时,y=2,∴P(0,2).
    点睛:本题主要考查轴对称图形的绘制和轴对称的应用.
    19、1台大收割机和1台小收割机每小时各收割小麦0.4hm2和0.2hm2.
    【解析】
    此题可设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,根据题中的等量关系列出二元一次方程组解答即可
    【详解】
    设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷
    根据题意可得
    解得
    答:每台大小收割机每小时分别收割0.4公顷和0.2公顷.
    【点睛】
    此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系
    20、(1)证明见解析;(2)△EAD是等腰三角形.证明见解析;(3).
    【解析】
    试题分析:
    (1)连接OG,则由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,从而可得∠KGE=∠AKH=∠EKG,这样即可得到KE=GE;
    (2)设∠FGB=α,由AB是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE可得∠EKG=90°-α,这样在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,这样可得∠E=∠ACH,由此即可得到CA∥EF;
    (3)如下图2,作NP⊥AC于P,
    由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,设AH=3a,可得AC=5a,CH=4a,则tan∠CAH=,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC,从而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,结合AK=可得a=1,则AC=5;在四边形BGKH中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG可得∠ACG=∠AKH,
    在Rt△APN中,由tan∠CAH=,可设PN=12b,AP=9b,由tan∠ACG=tan∠AKH=3可得CP=4b,由此可得AC=AP+CP==5,则可得b=,由此即可在Rt△CPN中由勾股定理解出CN的长.
    试题解析:
    (1)如图1,连接OG.

    ∵EF切⊙O于G,
    ∴OG⊥EF,
    ∴∠AGO+∠AGE=90°,
    ∵CD⊥AB于H,
    ∴∠AHD=90°,
    ∴∠OAG=∠AKH=90°,
    ∵OA=OG,
    ∴∠AGO=∠OAG,
    ∴∠AGE=∠AKH,
    ∵∠EKG=∠AKH,
    ∴∠EKG=∠AGE,
    ∴KE=GE.
    (2)设∠FGB=α,
    ∵AB是直径,
    ∴∠AGB=90°,
    ∴∠AGE=∠EKG=90°﹣α,
    ∴∠E=180°﹣∠AGE﹣∠EKG=2α,
    ∵∠FGB=∠ACH,
    ∴∠ACH=2α,
    ∴∠ACH=∠E,
    ∴CA∥FE.
    (3)作NP⊥AC于P.
    ∵∠ACH=∠E,
    ∴sin∠E=sin∠ACH=,设AH=3a,AC=5a,
    则CH=,tan∠CAH=,
    ∵CA∥FE,
    ∴∠CAK=∠AGE,
    ∵∠AGE=∠AKH,
    ∴∠CAK=∠AKH,
    ∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK=,
    ∵AK=,
    ∴,
    ∴a=1.AC=5,
    ∵∠BHD=∠AGB=90°,
    ∴∠BHD+∠AGB=180°,
    在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,
    ∴∠ABG+∠HKG=180°,
    ∵∠AKH+∠HKG=180°,
    ∴∠AKH=∠ABG,
    ∵∠ACN=∠ABG,
    ∴∠AKH=∠ACN,
    ∴tan∠AKH=tan∠ACN=3,
    ∵NP⊥AC于P,
    ∴∠APN=∠CPN=90°,
    在Rt△APN中,tan∠CAH=,设PN=12b,则AP=9b,
    在Rt△CPN中,tan∠ACN==3,
    ∴CP=4b,
    ∴AC=AP+CP=13b,
    ∵AC=5,
    ∴13b=5,
    ∴b=,
    ∴CN===.

    21、(1)y=x1+x;(1)y1﹣y1=;(3)①△AA′B为等边三角形,理由见解析;②平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣ )和(﹣,﹣1)
    【解析】
    (1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;
    (1)将直线l的解析式代入抛物线F的解析式中,可求出x1、x1的值,利用一次函数图象上点的坐标特征可求出y1、y1的值,做差后即可得出y1-y1的值;
    (3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.
    ①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;
    ②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.
    【详解】
    (1)∵抛物线y=x1+bx+c的图象经过点(0,0)和(﹣,0),
    ∴,解得:,
    ∴抛物线F的解析式为y=x1+x.
    (1)将y=x+m代入y=x1+x,得:x1=m,
    解得:x1=﹣,x1=,
    ∴y1=﹣+m,y1=+m,
    ∴y1﹣y1=(+m)﹣(﹣+m)=(m>0).
    (3)∵m=,
    ∴点A的坐标为(﹣,),点B的坐标为(,1).
    ∵点A′是点A关于原点O的对称点,
    ∴点A′的坐标为(,﹣).
    ①△AA′B为等边三角形,理由如下:
    ∵A(﹣,),B(,1),A′(,﹣),
    ∴AA′=,AB=,A′B=,
    ∴AA′=AB=A′B,
    ∴△AA′B为等边三角形.
    ②∵△AA′B为等边三角形,
    ∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P的坐标为(x,y).
    (i)当A′B为对角线时,有,
    解得,
    ∴点P的坐标为(1,);
    (ii)当AB为对角线时,有,
    解得:,
    ∴点P的坐标为(﹣,);
    (iii)当AA′为对角线时,有,
    解得:,
    ∴点P的坐标为(﹣,﹣1).
    综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣ )和(﹣,﹣1).
    【点睛】
    本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(1)将一次函数解析式代入二次函数解析式中求出x1、x1的值;(3)①利用勾股定理(两点间的距离公式)求出AB、AA′、A′B的值;②分A′B为对角线、AB为对角线及AA′为对角线三种情况求出点P的坐标.
    22、 (1) y=﹣x2﹣3x+4;(2)当时,S有最大值;(3)点P的横坐标为﹣2或1或或.
    【解析】
    (1)将代入,列方程组求出b、c的值即可;
    (2)连接PD,作轴交于点G,求出直线的解析式为,设
    ,则,
    ,,
    当时,S有最大值;
    (3)过点P作轴,设,则,

    根据,列出关于x的方程,解之即可.
    【详解】
    解:(1)将、代入,

    ∴二次函数的表达式;
    (2)连接,作轴交于点,如图所示.

    在中,
    令y=0,得,


    ∴直线AD的解析式为.
    设,则,

    ∴.

    ∴当时,S有最大值.
    (3)过点P作轴,设,则,,







    当点P在y轴右侧时,,
    ,或,
    (舍去)或(舍去),
    当点P在y轴左侧时,x<0,
    ,或,
    (舍去),或(舍去),
    综上所述,存在点F,使与互余点P的横坐标为或或或.
    【点睛】
    本题是二次函数,熟练掌握相似三角形的判定与性质、平行四边形的性质以及二次函数图象的性质等是解题的关键.
    23、(1)详见解析;(2)详见解析;(3).
    【解析】
    (1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;
    (2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;
    (3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.
    (1)证明:连接BD,
    在Rt△ABC中,∠ABC=90°,AB=BC,
    ∴∠A=∠C=45°,
    ∵AB为圆O的直径,
    ∴∠ADB=90°,即BD⊥AC,
    ∴AD=DC=BD=AC,∠CBD=∠C=45°,
    ∴∠A=∠FBD,
    ∵DF⊥DG,
    ∴∠FDG=90°,
    ∴∠FDB+∠BDG=90°,
    ∵∠EDA+∠BDG=90°,
    ∴∠EDA=∠FDB,
    在△AED和△BFD中,
    ∠A=∠FBD,AD=BD,∠EDA=∠FDB,
    ∴△AED≌△BFD(ASA),
    ∴AE=BF;
    (2)证明:连接EF,BG,

    ∵△AED≌△BFD,
    ∴DE=DF,
    ∵∠EDF=90°,
    ∴△EDF是等腰直角三角形,
    ∴∠DEF=45°,
    ∵∠G=∠A=45°,
    ∴∠G=∠DEF,
    ∴GB∥EF;
    (3)∵AE=BF,AE=1,
    ∴BF=1,
    在Rt△EBF中,∠EBF=90°,
    ∴根据勾股定理得:EF2=EB2+BF2,
    ∵EB=2,BF=1,
    ∴EF=,
    ∵△DEF为等腰直角三角形,∠EDF=90°,
    ∴cos∠DEF=,
    ∵EF=,
    ∴DE=×,
    ∵∠G=∠A,∠GEB=∠AED,
    ∴△GEB∽△AED,
    ∴,即GE•ED=AE•EB,
    ∴•GE=2,即GE=,
    则GD=GE+ED=.
    24、(1)证明见解析;(2)15.
    【解析】
    (1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.
    (2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.
    【详解】
    (1)证明:连结OD,∵∠ACB=90°,
    ∴∠A+∠B=90°,
    又∵OD=OB,
    ∴∠B=∠BDO,
    ∵∠ADE=∠A,
    ∴∠ADE+∠BDO=90°,
    ∴∠ODE=90°.
    ∴DE是⊙O的切线;
    (2)连结CD,∵∠ADE=∠A,

    ∴AE=DE.
    ∵BC是⊙O的直径,∠ACB=90°.
    ∴EC是⊙O的切线.
    ∴DE=EC.
    ∴AE=EC,
    又∵DE=10,
    ∴AC=2DE=20,
    在Rt△ADC中,DC=
    设BD=x,在Rt△BDC中,BC2=x2+122,
    在Rt△ABC中,BC2=(x+16)2﹣202,
    ∴x2+122=(x+16)2﹣202,解得x=9,
    ∴BC=.
    【点睛】
    考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.

    相关试卷

    2022年浙江省义乌地区重点达标名校中考数学考试模拟冲刺卷含解析: 这是一份2022年浙江省义乌地区重点达标名校中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    2022年贵州省遵义地区重点达标名校中考数学考试模拟冲刺卷含解析: 这是一份2022年贵州省遵义地区重点达标名校中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,如图,将△ABC绕点C,下列代数运算正确的是等内容,欢迎下载使用。

    2022届湖北省黄冈市季黄梅县重点达标名校中考数学考试模拟冲刺卷含解析: 这是一份2022届湖北省黄冈市季黄梅县重点达标名校中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了下列各数中,无理数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map